scholarly journals A review on conductometric studies of electrolytes in mixed solvent systems to understand ion-ion and ion-solvent interactions

2020 ◽  
Vol 10 (2) ◽  
pp. 5332-5337

The study of ion- solvent interaction is of much importance to investigate the nature of different solutions. Measurement of electrical conductivity and evaluation of physico-chemical properties, such as molar conductance, limiting molar conductance, ion-pair association, Walden product etc. shade light on different intermolecular interactions present in electrolyte solutions. Solvation properties can be varied by mixing two or more solvents. An extensive literature survey on conductometric studies has been carried out on different electrolytes dissolved in a wide range of mixed solvent systems. The reported results show that strong solute-solute, solute-solvent and solvent-solvent interactions are responsible for the physico- chemical behavior of a solution in mixed solvents.

2020 ◽  
Vol 10 (3) ◽  
pp. 5355-5360

The study of ion- solvent interaction is of much importance to investigate the nature of different solutions. Measurement of electrical conductivity and evaluation of physico-chemical properties, such as molar conductance, limiting molar conductance, ion-pair association, Walden product etc. shade light on different intermolecular interactions present in electrolyte solutions. Solvation properties can be varied by mixing two or more solvents. An extensive literature survey on conductometric studies has been carried out on different electrolytes dissolved in a wide range of mixed solvent systems. The reported results show that strong solute-solute, solute-solvent and solvent-solvent interactions are responsible for the physico- chemical behavior of a solution in mixed solvents.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vikrant Abbot ◽  
Poonam Sharma

AbstractFlavonoids amongst the class of secondary metabolites possess numerous health benefits, are known for its use in pharmaceutical industry. Quercetin, a flavonoid has more prominent medical advantages however its utilization is constrained because of various instability and insolubility issues and therefore, taken into consideration for studying its physico-chemical properties. In view of that, the thermodynamic and thermoacoustic properties of quercetin were examined in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at different hydroethanolic concentrations and temperatures. The conductivity studies were used to calculate change in enthalpy (∆Hom), change in entropy (∆Som) and change in Gibbs free Energy (∆Gom) of micellization. The interactions between quercetin and CTAB were found to be endothermic, entropically controlled and spontaneous. Further, ultrasonic sound velocity and density studies were carried out and utilized for the calculation of thermoacoustic parameters i.e. apparent molar volume and apparent molar compressibility. Thermoacoustic properties revealed that at higher surfactant concentration, hydrophobic interactions are dominant. The results suggested that the flavonoid-surfactant interactions in hydroethanolic solutions is more favourable as compared with aqueous solution. Overall, the data is favourable for the framework to be used for detailing advancement, drug development, drug industry, pharmaceutical industry, medical administration and formulation development studies.


RSC Advances ◽  
2014 ◽  
Vol 4 (79) ◽  
pp. 42029-42034 ◽  
Author(s):  
Mariano G. S. Vieira ◽  
Nilce V. Gramosa ◽  
Nágila M. P. S. Ricardo ◽  
Gareth A. Morris ◽  
Ralph W. Adams ◽  
...  

Brij surfactant micelles in mixed solvent systems aid resolution of natural product NMR signals in diffusion-ordered spectroscopy.


2019 ◽  
Vol 6 (2) ◽  
pp. 181823 ◽  
Author(s):  
Guangyu Shi ◽  
Yizhu Qian ◽  
Fengzhi Tan ◽  
Weijie Cai ◽  
Yuan Li ◽  
...  

Oil/water separation is a field of high significance as it might efficiently resolve the contamination of industrial oily wastewater and other oil/water pollution. In this paper, an environmentally-friendly hydrophobic aerogel with high porosity and low density was successfully synthesized with renewable pomelo peels (PPs) as precursors. Typically, a series of sponge aerogels (HPSA-0, HPSA-1 and HPSA-2) were facilely prepared via high-speed dispersion, freeze-drying and silanization with methyltrimethoxysilane. Indeed, the physical properties of aerogel such as density and pore diameter could be tailored by different additives (filter paper fibre and polyvinyl alcohol). Hence, their physico-chemical properties including internal morphology and chemical structure were characterized in detail by Fourier transform infrared, Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscope, Thermal gravimetric analyzer (TG) etc. Moreover, the adsorption capacity was further determined and the results revealed that the PP-based aerogels presented excellent adsorption performance for a wide range of oil products and/or organic solvents (crude oil 49.8 g g −1 , soya bean oil 62.3 g g −1 , chloroform 71.3 g g −1 etc.). The corresponding cyclic tests showed the absorption capacity decreased slightly from 94.66% to 93.82% after 10 consecutive cycles, indicating a high recyclability.


1982 ◽  
Vol 1 (3) ◽  
pp. 239-247 ◽  
Author(s):  
D.G. Clark ◽  
D.J. Tinston

1 The relative potency of effect of a wide range of halogenated and unsubstituted hydrocarbons on the central nervous system (CNS) and the heart of experimental animals have been determined. 2 The chemicals used caused either stimulation or depression of the rat CNS after 10 minutes' inhalation of concentrations ranging from 0.24% to > 80% (v/v), and cardiac sensitization in dogs after 5 minutes' inhalation of 0.12% to approximately 80% (v/v). 3 The toxicity could not be correlated with chemical structure, molecular weight, the presence or absence of various halogen atoms or the degree of saturation, but it was inversely related to the saturated vapour pressure. When the results were expressed on a thermodynamic scale the chemicals had similar potencies at relative saturations of 0.004 to 0.04 4 It is suggested that the effects of these chemicals on the CNS and the heart are probably structurally non-specific, and the chemicals may be regarded as physical toxicants whose effects are predictable from their physico-chemical properties.


2000 ◽  
Vol 84 (S1) ◽  
pp. 19-25 ◽  
Author(s):  
Klaas D. Kussendrager ◽  
A. C. M. van Hooijdonk

Lactoperoxidase (LP) is one of the most prominent enzymes in bovine milk and catalyses the inactivation of a wide range of micro-organisms in the lactoperoxidase system (LP-s). LP-systems are also identified as natural antimicrobial systems in human secretions such as saliva, tear-fluid and milk and are found to be harmless to mammalian cells. The detailed molecular structure of LP is identified and the major products generated by the LP-s and their antimicrobial action have been elucidated for the greater part. In this paper several aspects of bovine LP and LP-s are discussed, including physico-chemical properties, occurrence in milk and colostrum and mechanisms of action. Since the introduction of industrial processes for the isolation of LP from milk and whey the interest in this enzyme has increased considerably and attention will be paid to potential and actual applications of LP-systems as biopreservatives in food and other products.


1996 ◽  
Vol 116 (1-2) ◽  
pp. 185-192 ◽  
Author(s):  
L.L. Lee ◽  
L.-J. Lee ◽  
D. Ghonasgi ◽  
M. Llano-Restrepo ◽  
W.G. Chapman ◽  
...  

The electric currents in living tissues have interested physiologists ever since their existence was proved by Du Bois Reymond, but little was done towards explaining their origin and magnitude on a quantitative physico-chemical basis befor the pioneer researches og J. S. Macdonald. Work previous to Macdonald's has discussed fully by that anuthor (1902), hence it will not be mentioned here. macdonald found that the injury potential of medullated nerve, either frog's or mammal's (1900, a, b ; 1902), could be given a value greater or smaller than the normal by simply altering the concentration of the solution in contact with the external surfaces of the fibres. He showed that solutions of NaOH, HCl, NaCl, or KCl affected the potential according to their concentrations and that the relationship between the two variables was a logarithmic one, which fact was in agreement with the then new theory of concentration cells developed by Nernst. Macdonald went on to point out (1902) that the effects of potassium chloride solutions were particularly interesting, and to suggest that the difference between the concentration of potassium in the axis cylinder of the nerve and in the surrounding blood or salt solution was wholly responsible for the observed injury potential. Over a wide range of concentration, 1/8 to 1 molar, he demonstrated that there was nearly a linear relation between the injury potential and the logarithm of the potassium ion concentration. However, since he simply varied the concentrations of his electrolyte solutions, and made no effort to maintain them isotonic with blood by the addition of a non-electrolyte, exception might be taken to some of his results on the ground that the effects were due in part to the passage of water into or out of the nerve with a consequent dilution or concentration of the plasma.


Substantia ◽  
2021 ◽  
pp. 39-48
Author(s):  
Tanita Gettongsong ◽  
Mojtaba Taseidifar ◽  
Richard M. Pashley ◽  
Barry W. Ninham

This paper reports the synthesis and properties of new polymer resins containing strong acid and base groups for optimising applications in desalination. Several polyampholytic gels were synthesised with a ratio of 1:1 of strong acid (sulphonate) and strong base (quaternary ammonium) groups and a zwitterionic resin with a 1:1 strong acid and base ratio. The physico-chemical properties of these highly charged resins were studied in electrolyte solutions over a range of pH values, in particular: effects of chemical cross-linking, water and electrolyte swelling; bulk electrical conductivities and surface charging properties in different pH values. The results from absorption of NaCl showed that the resins have considerable potential for more effective desalination than other resin-based techniques.


Sign in / Sign up

Export Citation Format

Share Document