scholarly journals Simulation of droplet ejection based on electromechanical parameters & chemical condition for controlling inkjet printing devices

2020 ◽  
Vol 10 (3) ◽  
pp. 5361-5368 ◽  

In this study, the droplets in inkjet printing have been simulated based on mechanical parameters including temperature and pressure changing and also the chemical condition contain dielectric of various solvent materials has been investigated. Basically in viewpoint of electromechanical parameters we simulated and divided the inkjet printing into the piezoelectric type and thermal type, and as our results shows, each type has advantages and disadvantages. In this paper the piezoelectric types which has features such as; ink delivery quantity, driving control, controlling of droplet size based on color representation, generating heat and superb reliability have been introduced. By this work, we exhibit the deformation of piezoelectric elements is applied in two ways, consist of thickness deformation and sliding deformation. This chamber is included in a small slot that is created through two piezoelectric crystal plates .In addition the voltages inserted to the piezoelectric walls on both sides cause deformation mode. Due to this operation shear mode deformation occurs to both walls and via the ink pressure chamber, ink drops are delivered. Several inks applied as a dielectric material layers for conductive track in electrochemical sensors. Thus, passivation of printed sensors and deposition of adhesives can be achieved simultaneously. In this work, the presented method for the printing of UV-curable adhesive and dielectric inks demonstrates a rapid facile prototyping process.

Author(s):  
L. Yu. Martynov ◽  
O. A. Naumova ◽  
N. K. Zaytsev ◽  
I. Yu. Lovchinovsky

The review describes the application of solid electrodes based on copper for voltammetric analysis of major classes of organic and inorganic substances over the last fifty years. Despite the fact that there are many reviews of individual solid electrodes this review offers the first comprehensive report on all forms of copper electrodes. The advantages and disadvantages of copper electrodes in comparison with electrodes made of other metals are discussed. Varieties of copper electrodes, their basic physico-chemical properties and some specific characteristics of their surface are described. The electrochemical behavior of copper in aqueous solutions and electrocatalytic mechanisms of transformations of matter on its surface are reported. Examples of the use of electrochemical copper sensors for flow-injection analysis and liquid chromatography are given. Recent trends of the use of copper micro- and nanostructured electrodes in electrochemical analysis are reviewed. The prospects of using copper as a material for the creation of new electrochemical sensors are shown.


2012 ◽  
Vol 27 (5) ◽  
pp. 590-594
Author(s):  
何慧 HE Hui ◽  
王刚 WANG Gang ◽  
赵谡玲 ZHAO Su-ling ◽  
刘则 LIU Ze ◽  
侯文军 HOU Wen-jun ◽  
...  

Author(s):  
F. F. Rodrigues ◽  
J. C. Pascoa ◽  
M. Trancossi

Dielectric Barrier Discharge plasma actuators are simple devices with great potential for active flow control applications. They have very interesting features which have made them a topic of interest for many researchers, for instance they present very low mass, fast response time, low cost, easy implementation and they are fully electronic with no moving parts. The dielectric material used in the construction of these devices present an important role in their performance. The variety of dielectrics studied in the literature is very restrict and the majority of the authors make use of Kapton, Teflon, Macor ceramic or PMMA. Furthermore, several authors reported difficulties in the durability of the dielectric layer when actuators operate at high levels of voltage and frequency. Considering this background, the present study focus on the experimental testing of alternative dielectric materials which can be used for DBD plasma actuators fabrication. Considering this, plasma actuators with dielectric layers made of Poly-Isobutylene rubber, Poly-Lactic acid and Acetoxy Silicon were experimentally tested. Although these dielectric materials are not commonly used in plasma actuators, their values of dielectric strength and dielectric permittivity indicate they can be good solutions. The plasma actuators facbricated with these alternative dielectric materials were experimentally analysed in terms of electrical characteristics and induced flow velocity, and the obtained results were compared with an actuator made of Kapton which is, currently, the most common dielectric material for plasma actuators. The effectiveness of the actuators was estimated and the advantages and disadvantages of the use of each dielectric material were discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Hailu Liu ◽  
Dong Xie ◽  
Huayan Shen ◽  
Fayong Li ◽  
Junjia Chen

Colour patterns based on micro-nano structure have attracted enormous research interests due to unique optical switches and smart surface applications in photonic crystal, superhydrophobic surface modification, controlled adhesion, inkjet printing, biological detection, supramolecular self-assembly, anti-counterfeiting, optical device and other fields. In traditional methods, many patterns of micro-nano structure are derived from changes of refractive index or lattice parameters. Generally, the refractive index and lattice parameters of photonic crystals are processed by common solvents, salts or reactive monomers under specific electric, magnetic and stress conditions. This review focuses on the recent developments in the fabrication of micro-nano structures for patterns including styles, materials, methods and characteristics. It summarized the advantages and disadvantages of inkjet printing, angle-independent photonic crystal, self-assembled photonic crystals by magnetic field force, gravity, electric field, inverse opal photonic crystal, electron beam etching, ion beam etching, laser holographic lithography, imprinting technology and surface wrinkle technology, etc. This review will provide a summary on designing micro-nano patterns and details on patterns composed of photonic crystals by surface wrinkles technology and plasmonic micro-nano technology. In addition, colour patterns as switches are fabricated with good stability and reproducibility in anti-counterfeiting application. Finally, there will be a conclusion and an outlook on future perspectives.


2020 ◽  
Vol 7 (2) ◽  
pp. 460-468
Author(s):  
Bhawna Nagar ◽  
Milica Jović ◽  
Victor Costa Bassetto ◽  
Yingdi Zhu ◽  
Horst Pick ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2398 ◽  
Author(s):  
Johanna Zikulnig ◽  
Ali Roshanghias ◽  
Lukas Rauter ◽  
Christina Hirschl

With the growing significance of printed sensors on the electronics market, new demands on quality and reproducibility have arisen. While most printing processes on standard substrates (e.g., Polyethylene terephthalate (PET)) are well-defined, the printing on substrates with rather porous, fibrous and rough surfaces (e.g., uncoated paper) contains new challenges. Especially in the case of inkjet-printing and other deposition techniques that require low-viscous nanoparticle inks the solvents and deposition materials might be absorbed, inhibiting the formation of homogeneous conductive layers. As part of this work, the sheet resistance of sintered inkjet-printed conductive silver (Ag-) nanoparticle cross structures on two different, commercially available, uncoated paper substrates using Van-der-Pauw’s method is evaluated. The results are compared to the conductivity of well-studied, white heat stabilised and treated PET foil. While the sheet resistance on PET substrate is highly reproducible and the variations are solely process-dependent, the sheet resistance on uncoated paper depends more on the substrate properties themselves. The results indicate that the achievable conductivity as well as the reproducibility decrease with increasing substrate porosity and fibrousness.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sina Seipel ◽  
Junchun Yu ◽  
Vincent A. Nierstrasz

Abstract Although resource-efficient processes like inkjet printing have a large potential to foster the development of smart and functional textiles, one bottleneck still is the development of functional inks. To make inkjet printing and UV curing given production techniques for smart and functional specialty products, e.g. photochromic textiles, deepened knowledge about the development, rheological behavior and jetting behavior of functional ink is needed. This paper focuses on the formulation and performance of UV-responsive and UV-curable inkjet inks, which are based on photochromic dyes and their application to produce UV-responsive textiles. Two commercial photochromic dyes—Reversacol Ruby Red (RR) and Sea Green (SG), which represent dyes of the naphthopyran and spirooxazine class, respectively, have been used to develop the inks. The photochromic inks are characterized according to their physical–chemical and rheological properties in respect to temperature. The influence of temperature on the drop formation of the inks in an industrial print head is analyzed using a high-speed camera, which reveals important information regarding challenges in ink jettability. It was found that the dye structure and type used in the ink can influence the jetting behavior of photochromic UV-curable ink. More pronounced temperature sensitivity of dyes can increase the temperature-related effects of drop formation as was observed for SG ink. The printability of the RR and SG inks is framed and underpinned by theoretical calculations of the Z number. Discrepancies are observed and discussed between existing theory of ink jettability and visual evaluation of the photochromic ink.


Author(s):  
Liling Tang ◽  
Yuxi Ding ◽  
Lei Liu ◽  
Junshi Zhang

Abstract In this article, we propose a method to realize the pure shear deformation mode of dielectric elastomer (DE) membranes by tuning two in-plane prestresses. With utilization of carbon grease electrodes, VHB 4905 membranes are prestretched and attached into a retractable device, forming a pure-shear deformation controller. Experimental results demonstrate that, accurate pure shear deformation mode of DEs can be realized by tuning the mechanical loads in the two directions of the deformation controller. Furthermore, large deformation in the direction of free state can be achieved without electromechanical instabilities. The designed deformation controller accurately realizes the specific pure shear deformation mode of DEs and can be utilized to help design the practical soft actuators.


2017 ◽  
Vol 20 (4) ◽  
pp. 205-221 ◽  
Author(s):  
Weifeng Chen ◽  
Shaona Chen ◽  
Weimin Hu ◽  
Dejiang Li ◽  
Zhongxu Dai

Graphene, a two-dimensional sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, can be combined with various polymers through different methods and techniques. Polymer/graphene nanocomposites are expected to not only preserve the fa-vorable properties of graphene and polymers, but also greatly enhance the intrinsic properties due to the synergetic effect between them. In this review, the preparation approaches of graphene/polymer nanocomposites, including melt blending, solution blending, in-situ polymeri-zation and in-situ synthesis, were presented comprehensively in order to study the relationship between these approaches and the final characteristics and performances. Each approach had different influences on the final properties of the nanocomposites. The advantages and disadvantages of the preparation methods were discussed respectively. Additionally, the application researches of the polymer/graphene nanocomposites as electrochemical sensors, were introduced in detail. With regard to some important or novel sensors, the mechanisms were proposed for reference. Finally, conclusions were given and the issues waiting to be settled for further development were pointed out. The current review demonstrates that polymer/graphene nanocomposites exhibit superior electrochemical performances and will be applied practically in the field of sensor devices.


Sign in / Sign up

Export Citation Format

Share Document