scholarly journals Equilibrium and Kinetic Study on the Biosorption of Trypan Blue from Aqueous Solutions using Avocado Seed Powder

2020 ◽  
Vol 11 (3) ◽  
pp. 11042-11053

This research aims to investigate the removal of trypan blue dye from aqueous solutions by employing ground avocado seeds powder, a low-cost biowaste adsorbent (biosorbent), under various experimental conditions. The effect of contact time, initial dye concentration, and adsorbent dose on dye removal were studied. The experimental kinetic data were fitted to pseudo-first-order and pseudo-second-order kinetic models. Results imply that adsorption of trypan blue on the avocado seed adsorbent nicely followed the pseudo-second-order kinetic model. Equilibrium isotherms were analyzed by Langmuir and Freundlich isotherms, where Langmuir isotherm described the isotherm data with a high-correlation coefficient (R2=0.9948) closer to unity, and maximum adsorption capacity was found to be 19.3 mg g−1. The present study results substantiate that ground avocado seeds are a promising adsorbent for the removal of the dye trypan blue from industrial wastewater.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2295 ◽  
Author(s):  
Souad Rakass ◽  
Hicham Oudghiri Hassani ◽  
Mostafa Abboudi ◽  
Fethi Kooli ◽  
Ahmed Mohmoud ◽  
...  

Nano Molybdenum trioxide (α-MoO3) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO3 nanoparticles after adsorption and regeneration. The α-MoO3 nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.


Author(s):  
Marta Lígia Pereira da Silva ◽  
Tellys Lins Almeida Barbosa ◽  
Meiry Gláucia Freire Rodrigues

Background: Region-based solutions for water cleaning could be critical to tackle the water challenges faced in enhancing the in the future. Brazilian Primavera clay is cheap, abundant, and an untested material that has the potential to be used for water cleaning. Objective: the objective of the present work was to thermally activate and characterize the Brazilian clay and then determine the potential to remove Cd2+ from an aqueous solution. Methods: Primavera clay was thermally activated at 300 oC and characterized using X ray diffraction, X-ray Spectroscopy Energy Dispersive, and N2 adsorption. Sorption equilibrium was determined using the following experimental conditions: constant pH 4.5, 5 h, and 27 oC. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms models were applied in order to determine the efficiency of clay used as an adsorbent. Adsorption kinetics was analyzed using the pseudo-second-order kinetic model. Results: In this study, results revealed that even though the heat treatment did not cause profound alterations on the clay structure(smectite) and surface area (78 m2 /g), a pseudo-second-order kinetic constant of 0.5563 mg/g/min was found for the cadmium removal. Conclusion: The mathematical models of the Langmuir and Temkin showed a better fit to the experimental data. A high affinity between the cadmium and the thermally activated Primavera clay was found up to 88 % with removal efficiencies.


Author(s):  
Seyedeh Mahsa Seyed Danesh ◽  
Shahab Shariati ◽  
Hossein Faghihian

Objective: In this study, amine functionalized magnetite Kit-6 silica nanocomposite (Fe3O4@SiO2@Kit-6-NH2) was synthesized as an adsorbent for removing Carmoisine food dye from aqueous solutions. Method: The nanocomposite was chemically synthesized and was characterized by X-ray diffraction analysis (XRD), vi-brating sample magnetometer (VSM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Taguchi orthogonal array experimental design method was used to op-timize the experimental conditions including adsorbent amount, pH of solution, amount of salt, the volume of sample and contact time. Pseudo first-order, pseudo second-order, intra-particle diffusion and Elovich kinetic models were investigated to study the kinetic parameters of sorption process. Results: The kinetic data corresponded to the pseudo second-order kinetic model with R2 = 0.9999. Also, adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The results indicated that the data were well fitted to the Freundlich isotherm model (R2 = 0.9984, n=1.0786). The reusability tests showed the proposed nanocomposite can be used more than 8 cycles with removal efficiency higher than 90%. Conclusion: The applicability study of proposed nanocomposite proved its ability for efficient removal of Carmoisine dye from real aqueous samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sumanjit Kaur ◽  
Seema Rani ◽  
Rakesh Kumar Mahajan

The present work aims to investigate the removal of dye congo red from aqueous solutions by two low-cost biowaste adsorbents such as ground nut shells charcoal (GNC) and eichhornia charcoal (EC) under various experimental conditions. The effect of contact time, ionic strength, temperature, pH, dye concentration, and adsorbent dose on the removal of dye was studied. The kinetic experimental data were fitted to pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich model, and Bangham’s model. Results imply that adsorption of congo red on these adsorbents nicely followed the second order kinetic model and maximum adsorption capacity was found to be 117.6 and 56.8 mg g−1for GNC and EC at 318 K, however it increases with increase in temperature for both adsorbents. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Temkin, Dubinin and Radushkevich, and Generalized Isotherms. Freundlich isotherm described the isotherm data with high-correlation coefficients. The results of the present study substantiate that biowaste material GNC and EC are promising adsorbents for the removal of the dye congo red.


2015 ◽  
Vol 17 (4) ◽  
pp. 701-715 ◽  

<div> <p>The present study investigates the ability of formaldehyde treated <em>Simarouba glauca</em> seed shell powder for removal of methylene blue (MB) from aqueous solutions. Batch adsorption studies were carried out under various experimental conditions such as agitation time, dye concentration, adsorbent dose and pH. The adsorbent was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), XRD, BET and CHNS analysis. The adsorption data were analysed using Langmuir, Freundlich, Temkin and Dubinin - Radushkevich isotherms. Equilibrium data fitted well to Langmuir isotherm with maximum adsorption capacity of 111.1 mg g <sup>-1</sup>. Adsorption kinetic data were verified using pseudo first order, pseudo second order and Intraparticle diffusion model. The kinetic data were found to fit well with pseudo second order model.</p> </div> <p>&nbsp;</p>


2020 ◽  
Author(s):  
Valeria Medoro ◽  
Celia Marcos Pascual ◽  
Giacomo Ferretti ◽  
Giulio Galamini ◽  
Massimo Coltorti

&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;: &lt;strong&gt;Cr&lt;sup&gt;6+&lt;/sup&gt; adsorption by modified vermiculite&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&amp;#160;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Valeria Medoro- University of Ferrara , Department of Physics and Earth Sciences, Italy&lt;/p&gt;&lt;p&gt;Celia Marcos Pascual-University of Oviedo, Department of Geology, Spain&lt;/p&gt;&lt;p&gt;Giacomo Ferretti- University of Ferrara , Department of Physics and Earth Sciences, Italy&lt;/p&gt;&lt;p&gt;Giulio Galamini- University of Ferrara , Department of Physics and Earth Sciences, Italy&lt;/p&gt;&lt;p&gt;Massimo Coltorti- University of Ferrara , Department of Physics and Earth Sciences, Italy&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This work aimed at investigating the adsorption of Cr&lt;sup&gt;6+&lt;/sup&gt;&amp;#160;in water by exfoliated vermiculite. The adsorbant tested in this experiment was a vermiculite (from China) which has been subjected to heating at 1000 &amp;#176;C for 1 minute, resulting in an exfoliated vermiculite.&lt;/p&gt;&lt;p&gt;Three effects were studied: 1) contact time; 2) initial concentracion of Cr&lt;sup&gt;6+&lt;/sup&gt;; 3) adsorbent mass. Samples were analysed by X Ray Fluorescence (XRF), X Ray Diffraction (XRD) and the solutions with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify the adsorbed Cr&lt;sup&gt;6+&lt;/sup&gt; by the vermiculite.&lt;/p&gt;&lt;p&gt;Results from XRD diffraction showed a conversion of vermiculite into flogopite&amp;#160; after heating at 1000&amp;#176;C for 1 minute because of: 1) high content of potassium, 2) dehydration and 3) structural re-ordering; after the contact of vermiculite with Cr&lt;sup&gt;6+&lt;/sup&gt;, the mineral structure did not change. The adsorption of Cr&lt;sup&gt;6+&lt;/sup&gt;&amp;#160;was studied by Langmuir, Freundlich and&amp;#160;Dubinin-Kaganer-Radushkevich&amp;#160;(DKR) isotherm models. DKR model, indicative of a cooperative process, described adsorption equilibrium better than the other two models and the maximum adsorption capacity obtained was of 2.81 mol/g. Kinetic was studied using pseudo-first and pseudo-second order kinetic models, with a better description of the process by pseudo-second order model with correlation coefficient almost unitary (R&lt;sup&gt;2&lt;/sup&gt;=0.9984; other kinetic parameters were k&lt;sub&gt;2&lt;/sub&gt;=0.0015 and the absorption initial rate of 0.2x10&lt;sup&gt;-8&lt;/sup&gt; mg g&lt;sup&gt;-1&lt;/sup&gt; h&lt;sup&gt;-1&lt;/sup&gt;).&amp;#160;&lt;/p&gt;&lt;p&gt;The present study demonstrates the effectiveness of modified vermiculite adsorbents for the treatment of hexavalent chromium-contaminated waters and that its adsorption depends on the experimental conditions (such as contact time, initial concentracion of Cr&lt;sup&gt;6+&lt;/sup&gt; and adsorbent mass).&lt;/p&gt;


2016 ◽  
Vol 4 (2) ◽  
pp. 105-112
Author(s):  
Lalchhing puii ◽  
◽  
Seung-Mok Lee ◽  
Diwakar Tiwari ◽  
◽  
...  

A mesoporous silica was synthesized by annealing (3-Aminopropyl) triethoxysilane grafted chitosan at 800˚C. The mesoporous silica was characterized by the XRD (X-ray diffraction) analysis. The BET specific surface area and pore size of silica was found to be 178.42 m2/g and 4.13 nm. The mesoporous silica was then employed for the efficient remediation of aqueous solutions contaminated with Cu(II) under batch and column reactor operations. The mesoporous silica showed extremely high per cent removal of Cu(II) at wide pH range i.e., pH ~2.0 to 7.0. Relatively a fast uptake of Cu(II) was occurred and high percentage removal was obtained at initial concentrations studied from 1.0 to 15.0 mg/L. The equilibrium state sorption data were utilized for the Langmuir and Freundlich adsorption isotherm studies. Moreover, the effect of an increase in background electrolyte concentrations from 0.0001 to 0.1 mol/L NaNO3 was assessed for the uptake of Cu(II) by mesoporous silica. The equilibrium sorption was achieved within 240 min of contact and the kinetic data is best fitted to the pseudo-second-order and fractal like pseudo-second-order kinetic models. In addition, the mesoporous silica was used for dynamic studies under column reactor operations. The breakthrough curve was then used for the non-linear fitting of the Thomas equation and the loading capacity of the column for Cu(II) was estimated.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


2018 ◽  
Vol 5 (5) ◽  
pp. 172382 ◽  
Author(s):  
Wei Guo ◽  
Shujuan Wang ◽  
Yunkai Wang ◽  
Shaoyong Lu ◽  
Yue Gao

A magnetically modified rice husk biochar (MBC) was successfully prepared by a hydrothermal method from original biochar (BC) and subsequently used to remove phenanthrene (PHE) from aqueous solutions. The porosity, specific surface area and hydrophobicity of BC were significantly improved (approx. two times) after magnetic modification. The adsorption data fitted well to pseudo-second-order kinetic and Langmuir models. Compared with BC, MBC had a faster adsorption rate and higher adsorption capacity of PHE. The adsorption equilibrium for PHE on MBC was achieved within 1.0 h. The maximum adsorption capacity of PHE on MBC was 97.6 mg g −1 based on the analysis of the Sips model, which was significantly higher than that of other sources of BCs. The adsorption mechanism of the two BCs was mainly attributed to the action of surface functional groups and π–π-conjugated reactions. The adsorption of PHE on MBC mainly occurred in the functional groups of C–O and Fe 3 O 4 , but that on BC was mainly in the functional groups of –OH, N–H, C=C and C–O.


2020 ◽  
pp. 13-22

Hexavalent chromium (Cr(VI)) has the characteristic of forming anionic species, which are very toxic, very soluble in water and difficult to be removed. In this study, dichromate removal from aqueous solutions by chitosan and chitosan modified by sodium dodecyl sulfate (SDS) was addressed. The effect of various experimental parameters, such as pH (1-9), initial concentration (10-100 mg L-1), adsorbent dose (0.005-0.350 g) and contact time (5-60 min) was investigated. All experiments were conducted in batch mode at room temperature (~21 oC). The obtained equilibrium adsorption isotherms were analyzed using the Langmuir and Freundlich models. Furthermore, the kinetics of dichromate removal was analyzed by pseudo-first order, pseudo-second order and the Elovich models. Optimum conditions for obtaining high removal (~97%) within a relatively short time (60 min) are: 5.0 pH, 0.100 g SDS-chitosan dosage and an initial Cr2O72- concentration of 10 mg L-1. The dichromate adsorption capacity of chitosan is 8.3 mg L-1, while that of SDS-chitosan is 9.7 mg L-1. In addition, the adsorption of dichromate by chitosan and SDS-chitosan is well-fitted by the Langmuir and Freundlich models while the adsorption kinetics is best fitted by the pseudo-second-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document