scholarly journals Cr6+ adsorption by modified vermiculite

Author(s):  
Valeria Medoro ◽  
Celia Marcos Pascual ◽  
Giacomo Ferretti ◽  
Giulio Galamini ◽  
Massimo Coltorti

<p><strong>Abstract</strong>: <strong>Cr<sup>6+</sup> adsorption by modified vermiculite</strong></p><p><strong> </strong></p><p>Valeria Medoro- University of Ferrara , Department of Physics and Earth Sciences, Italy</p><p>Celia Marcos Pascual-University of Oviedo, Department of Geology, Spain</p><p>Giacomo Ferretti- University of Ferrara , Department of Physics and Earth Sciences, Italy</p><p>Giulio Galamini- University of Ferrara , Department of Physics and Earth Sciences, Italy</p><p>Massimo Coltorti- University of Ferrara , Department of Physics and Earth Sciences, Italy</p><p> </p><p>This work aimed at investigating the adsorption of Cr<sup>6+</sup> in water by exfoliated vermiculite. The adsorbant tested in this experiment was a vermiculite (from China) which has been subjected to heating at 1000 °C for 1 minute, resulting in an exfoliated vermiculite.</p><p>Three effects were studied: 1) contact time; 2) initial concentracion of Cr<sup>6+</sup>; 3) adsorbent mass. Samples were analysed by X Ray Fluorescence (XRF), X Ray Diffraction (XRD) and the solutions with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify the adsorbed Cr<sup>6+</sup> by the vermiculite.</p><p>Results from XRD diffraction showed a conversion of vermiculite into flogopite  after heating at 1000°C for 1 minute because of: 1) high content of potassium, 2) dehydration and 3) structural re-ordering; after the contact of vermiculite with Cr<sup>6+</sup>, the mineral structure did not change. The adsorption of Cr<sup>6+</sup> was studied by Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. DKR model, indicative of a cooperative process, described adsorption equilibrium better than the other two models and the maximum adsorption capacity obtained was of 2.81 mol/g. Kinetic was studied using pseudo-first and pseudo-second order kinetic models, with a better description of the process by pseudo-second order model with correlation coefficient almost unitary (R<sup>2</sup>=0.9984; other kinetic parameters were k<sub>2</sub>=0.0015 and the absorption initial rate of 0.2x10<sup>-8</sup> mg g<sup>-1</sup> h<sup>-1</sup>). </p><p>The present study demonstrates the effectiveness of modified vermiculite adsorbents for the treatment of hexavalent chromium-contaminated waters and that its adsorption depends on the experimental conditions (such as contact time, initial concentracion of Cr<sup>6+</sup> and adsorbent mass).</p>

Author(s):  
Seyedeh Mahsa Seyed Danesh ◽  
Shahab Shariati ◽  
Hossein Faghihian

Objective: In this study, amine functionalized magnetite Kit-6 silica nanocomposite (Fe3O4@SiO2@Kit-6-NH2) was synthesized as an adsorbent for removing Carmoisine food dye from aqueous solutions. Method: The nanocomposite was chemically synthesized and was characterized by X-ray diffraction analysis (XRD), vi-brating sample magnetometer (VSM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Taguchi orthogonal array experimental design method was used to op-timize the experimental conditions including adsorbent amount, pH of solution, amount of salt, the volume of sample and contact time. Pseudo first-order, pseudo second-order, intra-particle diffusion and Elovich kinetic models were investigated to study the kinetic parameters of sorption process. Results: The kinetic data corresponded to the pseudo second-order kinetic model with R2 = 0.9999. Also, adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The results indicated that the data were well fitted to the Freundlich isotherm model (R2 = 0.9984, n=1.0786). The reusability tests showed the proposed nanocomposite can be used more than 8 cycles with removal efficiency higher than 90%. Conclusion: The applicability study of proposed nanocomposite proved its ability for efficient removal of Carmoisine dye from real aqueous samples.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2021 ◽  
Author(s):  
Vani Gandham ◽  
UMA Addepally ◽  
Bala Narsaiah T

Abstract Malachite Green (MG), a cationic synthetic dye is considered hazardous when discharged into the water bodies without any adequate treatment. It can affect the multiple segments of the environment leading to irreversible persistent changes. So, there is a need for remediation with cost-effective method to remove dyes from effluents. Adsorption is one such technique to remove dyes from wastewater and is effective and economical. The present study describes the removal of MG cationic dye from wastewater using eco-friendly and biodegradable lignin extracted from hydrothermally treated rice straw by adsorption process. Functional group analysis and morphological characterisation was done to the extracted lignin after quantification. The maximum percent removal of MG 92 ± 0.2 % was observed from a series of batch experiments at optimum process parameters of: contact time 80 min, initial dye concentration 50 ppm, lignin dosage 0.25g, pH 7, temperature 300c and with 100 rpm agitation speed. The adsorption kinetics and isotherms were determined for the experimental data using four kinetic models (pseudo-first-order, second order, pseudo-second-order and intra-particle diffusion model) and two isotherm models (Langmuir and Freundlich). The results suggested that the kinetics data fit to the pseudo-second-order kinetic model with the maximum adsorption capacity 36.7 mg/g and the two isotherm models were applicable for the adsorption of MG onto the lignin. Additionally, the thermodynamic parameters ΔSo, ΔHo and ΔGo were evaluated. Therefore, lignin which is an environmental friendly and low cost carbon material that can be used as an adsorbent for dye removal.


Author(s):  
Marta Lígia Pereira da Silva ◽  
Tellys Lins Almeida Barbosa ◽  
Meiry Gláucia Freire Rodrigues

Background: Region-based solutions for water cleaning could be critical to tackle the water challenges faced in enhancing the in the future. Brazilian Primavera clay is cheap, abundant, and an untested material that has the potential to be used for water cleaning. Objective: the objective of the present work was to thermally activate and characterize the Brazilian clay and then determine the potential to remove Cd2+ from an aqueous solution. Methods: Primavera clay was thermally activated at 300 oC and characterized using X ray diffraction, X-ray Spectroscopy Energy Dispersive, and N2 adsorption. Sorption equilibrium was determined using the following experimental conditions: constant pH 4.5, 5 h, and 27 oC. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms models were applied in order to determine the efficiency of clay used as an adsorbent. Adsorption kinetics was analyzed using the pseudo-second-order kinetic model. Results: In this study, results revealed that even though the heat treatment did not cause profound alterations on the clay structure(smectite) and surface area (78 m2 /g), a pseudo-second-order kinetic constant of 0.5563 mg/g/min was found for the cadmium removal. Conclusion: The mathematical models of the Langmuir and Temkin showed a better fit to the experimental data. A high affinity between the cadmium and the thermally activated Primavera clay was found up to 88 % with removal efficiencies.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ying-Xia Ma ◽  
Yong-Xin Ruan ◽  
Dan Xing ◽  
Xue-Yan Du ◽  
Pei-Qing La

Ethylenediamine functionalized magnetic expanded graphite decorated with Fe3O4 nanoparticles (MEG-NH2) was fabricated by one-pot solvothermal method. The as-prepared MEG-NH2 nanohybrids were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Zeta potential analyzer. The effects of Fe3O4 content in MEG-NH2 nanohybrids, pH, initial concentration, contact time, and dosage on adsorption properties of the MEG-NH2 nanohybrids for Ag(I) from aqueous solution were investigated by batch experiments. The pseudo-first-order and the pseudo-second-order kinetic models were utilized to study adsorption kinetics. The experimental data was also analyzed with Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models. The results show that Ag(I) was reduced to silver in the process of the adsorption by MEG-NH2 nanohybrids; the experimental data was better fitted to pseudo-second-order model and Langmuir isotherm model which revealed that the adsorption process was a chemical adsorption by the formation of silver on the surface of MEG-NH2 nanohybrids.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


2009 ◽  
Vol 4 (2) ◽  
Author(s):  
Nassima Tazrouti ◽  
Moussa Amrani

Activated lignin having surface area of 1023 m2.g-1 has been prepared from sulfate lignin that was treated by 30 % H2O2 and carbonized at 300 °C in order to test the chromium (VI) adsorption from aqueous solution. The influence of contact time, pH, initial concentration of adsorbent and adsorbate and temperature on the adsorption capacity were investigated. The maximum removal of Cr(VI) was found to be 92,36 % at pH=2 and contact time of 80 min. Optimal concentration of lignin and Cr(VI) were found to be 3.8 g.l-1 and 180 mg.l-1, respectively. The adsorption kinetics was tested pseudo-first-order and pseudo-second-order equation. The analytical data were fitted well in a pseudo-second-order equation and the rate of removal of chromium was found to speed up with increasing temperature. Activation energy for the adsorption process was found to be 18.19 Kj.mol-1. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherm and isotherm constants for the adsorption of Cr (VI) on lignin. These constants and correlation coefficients of the isotherm models were calculated and compared. Results indicated that Cr (VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacity (qm) of Cr (VI) on lignin was 75.75 mg.g-1 at temperature of 40°C. The dimensionless equilibrium parameter (RL) signified a favorable adsorption of Cr (VI) on lignin and was found between 0.0601 and 0.818 (0<RL<1). The thermodynamic parameters like ΔG°, ΔS° and ΔH° were calculated and it has been found that the reaction was spontaneous and endothermic in nature. This study indicates that lignin has the potential to become an effective and economical adsorbent for removal Cr (VI) from the waste water.


Clay Minerals ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 485-496 ◽  
Author(s):  
I. Hamadneh ◽  
R. Abu-Zurayk ◽  
B. Abu-Irmaileh ◽  
A. Bozeya ◽  
A. H. Al-Dujaili

AbstractA comparative study using bentonite (BT), hexadecyltrimethylammonium-modified bentonite (BT-HDTMA) and phenyl fatty hydroxamic acid-modified bentonite (BT-PFHA) as adsorbents for the removal of Pb(II) has been proposed. These adsorbents were characterized by X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy and surface area measurement. Cation exchange capacity was also determined in this study. The adsorbent capabilities for Pb(II) from aqueous solution were investigated, and the optimal experimental conditions including adsorption time, adsorbent dosage, the initial concentration of Pb(II), pH and temperature that might influence the adsorption performance were also investigated. The experimental equilibrium adsorption data were tested by four widely used two-parameter equations, the Langmuir, Freundlich, Dubinin- Radushkevich (D-R) and Temkin isotherms. The monolayer adsorption capacities of BT, BT-HDTMA and BT-PFHA for Pb(II) were 149.3, 227.3 and 256.4 mg/g, respectively. The experimental kinetic data were analysed by pseudo-first order, pseudo-second order and intraparticle diffusion kinetics models. The experimental data fitted very well with the pseudo-second order kinetic model. Determination of the thermodynamic parameters, ΔG, ΔH and ΔS showed the adsorption to be feasible, spontaneous and exothermic.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Bilsen Tural ◽  
Erdal Ertaş ◽  
Mehmet Güzel ◽  
Servet Tural

AbstractIn this study, pumice from different regions of Turkey (Diyarbakir, Southeast Turkey and Bitlis, East Turkey) has been supplied and used as supporting material for nanoscale zero-valent iron (nFe0). Native Bitlis pumice (NBP)-supported nanoscale zero-valent iron (BP-nFe0) and native Diyarbakir pumice (NDP)-supported nanoscale zero-value iron (DP-nFe0) were synthesized under the same conditions. Native pumice (NDP, NBP) and pumice-supported nFe0 (DP-nFe0 and BP-nFe0) adsorbents were morphologically and structurally characterized by SEM, EDX, XRF and BET. When using NBP as support material, the iron content of the BP-nFe0 increased 1.9-fold from 1.99 to 3.83%. However, iron content of NDP (2.08%) increased approximately 29 times after it is used as a support material in synthesis of DP-nFe0 (60%). The removal potential of native pumice (NBP and NDP) and iron-modified pumice (BP-nFe0 and DP-nFe0) samples was investigated to remove Cr(VI) ions. The parameters of solution pH, initial metal concentration, contact time and the amount of adsorbent in the removal of chromium (VI) ions were investigated. Langmuir, Freundlich, Temkin, Dubinin–Radushkevich and Jovanovic isotherm models were used to evaluate the adsorption equilibrium data. The equilibrium adsorption was found so as to be well described by the Langmuir isotherm model for all the adsorbents studied. The maximum adsorption capacity of Cr(VI) ions for NDP, NBP, DP-nFe0 and BP-nFe0 was 10.82, 14.30, 161.29 and 17.39 mg/g, respectively. The rate of Cr(VI) removal was subjected to kinetic analysis using pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich models. Kinetic studies suggest that adsorption of NDP, NBP, DP-nFe0 and BP-nFe0 described more favorably by the pseudo-second-order kinetic model. The results showed that NDP is a much better support material for nFe0 when compared to NBP.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3315
Author(s):  
Moftah Essa Elkartehi ◽  
Rehab Mahmoud ◽  
Nabila Shehata ◽  
Ahmed Farghali ◽  
Shimaa Gamil ◽  
...  

In this work, the efficiency of the adsorptive removal of the organic cationic dye methylene blue (MB) from polluted water was examined using three materials: natural clay (zeolite), Zn-Fe layered double hydroxide (LDH), and zeolite/LDH composite. These materials were characterized via X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) diffraction (XRF), low-temperature N2 adsorption, pore volume and average pore size distribution and field emission scanning electron microscopy (FE-SEM). The properties of the applied nanomaterials regarding the adsorption of MB were investigated by determining various experimental parameters, such as the contact time, initial dye concentration, and solution pH. In addition, the adsorption isotherm model was estimated using the Langmuir, Freundlich, and Langmuir–Freundlich isotherm models. The Langmuir model was the best-fitting for all applied nanomaterials. In addition, the kinetics were analyzed by using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models, and the pseudo-second-order model was an apparent fit for all three applied nanomaterials. The maximum Adsorption capacity toward MB obtained from the materials was in the order zeolite/LDH composite > zeolites > Zn-Fe LDH. Thus, the zeolite/LDH composite is an excellent adsorbent for the removal of MB from polluted water.


Sign in / Sign up

Export Citation Format

Share Document