Synthesis and Characterization of Chitosan templated Mesoporous Silica: Efficient use of Mesoporous Silica in the removal of Cu(II) from Aqueous Solutions

2016 ◽  
Vol 4 (2) ◽  
pp. 105-112
Author(s):  
Lalchhing puii ◽  
◽  
Seung-Mok Lee ◽  
Diwakar Tiwari ◽  
◽  
...  

A mesoporous silica was synthesized by annealing (3-Aminopropyl) triethoxysilane grafted chitosan at 800˚C. The mesoporous silica was characterized by the XRD (X-ray diffraction) analysis. The BET specific surface area and pore size of silica was found to be 178.42 m2/g and 4.13 nm. The mesoporous silica was then employed for the efficient remediation of aqueous solutions contaminated with Cu(II) under batch and column reactor operations. The mesoporous silica showed extremely high per cent removal of Cu(II) at wide pH range i.e., pH ~2.0 to 7.0. Relatively a fast uptake of Cu(II) was occurred and high percentage removal was obtained at initial concentrations studied from 1.0 to 15.0 mg/L. The equilibrium state sorption data were utilized for the Langmuir and Freundlich adsorption isotherm studies. Moreover, the effect of an increase in background electrolyte concentrations from 0.0001 to 0.1 mol/L NaNO3 was assessed for the uptake of Cu(II) by mesoporous silica. The equilibrium sorption was achieved within 240 min of contact and the kinetic data is best fitted to the pseudo-second-order and fractal like pseudo-second-order kinetic models. In addition, the mesoporous silica was used for dynamic studies under column reactor operations. The breakthrough curve was then used for the non-linear fitting of the Thomas equation and the loading capacity of the column for Cu(II) was estimated.

2008 ◽  
Vol 6 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Doina Bilba ◽  
Daniela Suteu ◽  
Theodor Malutan

AbstractA cheap and efficient fibrous hydrolyzed polyacrylonitrile (HPAN) sorbent was obtained by alkaline hydrolysis of Romanian polyacrylonitrile fibres. Scanning electronic microscopy and infrared spectroscopy were used to characterize the hydrolyzed product and to confirm its functionalization. The adsorptive potential of the proposed sorbent for reactive dye Brilliant Red HE-3B removal from aqueous solutions of pH=2 was examined by the batch technique as a function of dye concentration, temperature solution and contact time. The Freundlich, Langmuir and Dubinin-Radushkevich adsorption models were applied to describe equilibrium sorption data and to determine the corresponding isotherm constants. The thermodynamic parameters ΔG, ΔH and ΔS were also determined; the values obtained show that sorption of reactive dye on HPAN fibres is a spontaneous, endothermic and entropy-driven process. The kinetics of sorption of the reactive dye were analyzed using pseudo-first order and pseudo-second order kinetic models. The kinetic data fitted well to pseudo-second order kinetics, indicating the chemisorption of reactive dye onto the fibrous sorbent. The sorption mechanism of the dye onto hydrolyzed fibres was confirmed by FTIR spectroscopy. The dye-loaded HPAN sorbent can be regenerated by treatment with 0.1M NaOH and the regenerated sorbent may be reused in several adsorption-desorption cycles. The results of this study provided evidence that the HPAN fibres are effective for removing reactive dye Brilliant Red HE-3B from aqueous effluents.


2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2295 ◽  
Author(s):  
Souad Rakass ◽  
Hicham Oudghiri Hassani ◽  
Mostafa Abboudi ◽  
Fethi Kooli ◽  
Ahmed Mohmoud ◽  
...  

Nano Molybdenum trioxide (α-MoO3) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO3 nanoparticles after adsorption and regeneration. The α-MoO3 nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.


2020 ◽  
pp. 13-22

Hexavalent chromium (Cr(VI)) has the characteristic of forming anionic species, which are very toxic, very soluble in water and difficult to be removed. In this study, dichromate removal from aqueous solutions by chitosan and chitosan modified by sodium dodecyl sulfate (SDS) was addressed. The effect of various experimental parameters, such as pH (1-9), initial concentration (10-100 mg L-1), adsorbent dose (0.005-0.350 g) and contact time (5-60 min) was investigated. All experiments were conducted in batch mode at room temperature (~21 oC). The obtained equilibrium adsorption isotherms were analyzed using the Langmuir and Freundlich models. Furthermore, the kinetics of dichromate removal was analyzed by pseudo-first order, pseudo-second order and the Elovich models. Optimum conditions for obtaining high removal (~97%) within a relatively short time (60 min) are: 5.0 pH, 0.100 g SDS-chitosan dosage and an initial Cr2O72- concentration of 10 mg L-1. The dichromate adsorption capacity of chitosan is 8.3 mg L-1, while that of SDS-chitosan is 9.7 mg L-1. In addition, the adsorption of dichromate by chitosan and SDS-chitosan is well-fitted by the Langmuir and Freundlich models while the adsorption kinetics is best fitted by the pseudo-second-order kinetic model.


2012 ◽  
Vol 560-561 ◽  
pp. 1174-1177 ◽  
Author(s):  
Dimitar Petrov Georgiev ◽  
Bogdan Iliev Bogdanov ◽  
Yancho Hristov ◽  
Irena Markovska

In this study, the sorption of Cu(II) ions in aqueous solutions of Zeolite NaA by performing batch kinetic sorption experiments. The equilibrium kinetic data were analyzed using the pseudo-second-order kinetic model. A comparison was made of the linear least-squares method and nonlinear method of the widely used pseudo-second-order kinetic model for the sorption of Cu(II) ions of Zeolite . Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. Kinetic parameters obtained from four kinetic linear equations using the linear method differed. Equation type 1 pseudo-second-order kinetic model very well represented the kinetic of the adsorption Cu(II) ions by Zeolite NaA. Equation type 4 exhibited the worst fit. Present investigation showed that the non-linear method may be a better way to determine the kinetic parameters.


2021 ◽  
Vol 9 (2) ◽  
pp. 161-168
Author(s):  
Ralte Malsawmdawngzela ◽  
◽  
Thanhming liana ◽  
Diwakar Tiwari ◽  
◽  
...  

The aim of this communication is to assess the sorption behavior of silanes grafted bentonite composite materials for Rhodamine B (RhB) from aqueous solution. The nanocomposites were synthesized by functionalization of the bentonite with 3-mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane under inert atmosphere. The batch experimental data indicated that the composite materials showed high percentage removal of RhB over a wide pH range, i.e., pH ~4.0 to 10.0. A high percentage removal of RhB was achieved within the concentrations studied from 1.0 to 25.0 mgL-1. Langmuir and Freundlich adsorption isotherm were obtained using equilibrium state sorption data. The equilibrium sorption was attained within 180 min of contact and the kinetic model best fitted the pseudo-second-order model. Further, the change in background electrolyte (NaCl) concentrations from 0.0001 to 0.1molL-1 NaCl and the presence of co-existing ions do not significantly affect the sorption of RhB by the composite sorbents except for EDTA.


2014 ◽  
Vol 49 (4) ◽  
pp. 339-345 ◽  
Author(s):  
Akbar Esmaeili ◽  
Mayam Darvish

The objective of this research was to study the efficacy of the marine brown alga Sargassum glaucescens in batch removal of Zn(II) from wastewater and seawater. For these experiments, a dried biomass was used to adsorb Zn(II) from aqueous solutions. The effects of varying pH, biomass weight, retention time and initial concentration of Zn(II) were studied. The maximum efficiency of Zn(II) removal obtained was 90.00%. The experimental adsorption data were fitted to the Freundlich adsorption model. A pseudo-second-order model was found to offer the best analysis of Zn(II) uptake. Kinetic studies showed that a biomass formed of marine-dried S. glaucescens exhibited high biosorption capacity. A solution pH of 5.0 was found to be optimal for adsorption. Results showed that removal of Zn(II), increased to 90.00% with increasing contact time, increasing pH (to 5.0) and decreasing adsorbent amount. The equilibrium adsorption data are fitted to the Freundlich isotherm model and pseudo-second-order kinetic models. Therefore, brown algae Sargassum glaucescens was an economical adsorbent.


2018 ◽  
Vol 78 (10) ◽  
pp. 2055-2063
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Samir El Hajjaji ◽  
Abdeljalil Zouhri

Abstract In this work, the use of a novel low-cost adsorbent derived from Ziziphus lotus (ZL) and industrial carbon (IC) has been successfully applied to the removal of methylene blue (MB) from aqueous solutions. The efficiency of this material was studied through Lagergren pseudo-first-order and pseudo-second-order kinetic models. The process for the novel activated carbon and the IC were best represented by the pseudo-second-order rate model. Langmuir and Freundlich isotherms were used to describe the sorption equilibrium data. The Langmuir model turned out to be the most adequate and maximum capacities were measured to be 833.33 and 142.85 mg.g−1 for ZL activated carbon and IC from Sigma Aldrich, respectively. The thermodynamic study revealed that the sorption process is spontaneous and endothermic for the two adsorbents. To explain the effectiveness of MB removal, ZL activated carbon was characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, X-ray diffraction and Fourier transform infrared spectroscopy.


2010 ◽  
Vol 160-162 ◽  
pp. 163-170
Author(s):  
Hong Zheng ◽  
Yang Wang ◽  
Peng Liang ◽  
Hong Bin Qi

The ability of Cr-bentonite prepared using synthetic wastewater containing chromium was investigated for adsorptive removal of 4-aminophenol and 4-chlorophenol from aqueous solution in a batch system at 25 °C. The physic-chemical parameters including pH value of solution and contact time were studied. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of sorption. The equilibrium sorption data for 4-aminophenol and 4-chlorophenol were well fitted to Langmuir adsorption isotherm and the monolayer sorption capacity was found to be 26.53 and 23.81 mg/g at 25 °C, respectively. The sorption energy calculated from Dubinin-Redushkevich (D-R) isotherm are 8.31 and 8.20 kJ/mol for the uptake of 4-aminophenol and 4-chlorophenol respectively which indicates that both the sorption processes are chemical in nature. The kinetic data were analyzed using pseudo-first order, pseudo-second order kinetic equation and intraparticle diffusion model. The experimental data fit very well the pseudo-second order kinetic model. Intraparticle diffusion affects 4-aminophenol and 4-chlorophenol uptake. Sorption studies carried out using industrial wastewater samples containing phenolic compounds show that there is significant potential for Cr-bentonite as an adsorbent material for phenollic compounds removal from aqueous solutions.


2015 ◽  
Vol 73 (7) ◽  
pp. 1691-1699 ◽  
Author(s):  
Ahmed A. El-Refaey

This study compared the performance of cement kiln dust (CKD) as industrial byproduct and commercially activated carbon (AC) as adsorbent derived from agricultural waste for the removal of cadmium (Cd2+) from aqueous solutions. CKD and AC were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) and surface areas demonstrate the differences of physicochemical properties. Batch equilibrium experiments were conducted for various intervals extended to 96 h at 20, 25 and 30°C to investigate the efficiency of the sorbents in the removal of Cd2+. CKD expressed high affinity for removal of Cd2+ and was not affected by temperature, while AC was significantly affected, which reflects dissimilarity in the retention mechanisms defendant in CKD and those pursued by AC. The results were explained by changes of FTIR and SEM images before and after sorption experiments. The suggestion is that electrostatic ion exchange and complex reactions are the main mechanisms for Cd2+ removal. The kinetic data were evaluated by fractional power, Elovich, pseudo-first order and pseudo-second-order kinetic models. The pseudo-second-order kinetic model was found to correlate with the experimental data well. These results revealed that CKD can be used as a cost-effective and efficient sorbent for Cd2+ removal in comparison with AC.


Sign in / Sign up

Export Citation Format

Share Document