scholarly journals Biodiesel Production from Crude Palm Oil Using Sulfuric Acid and K2O Catalysts through a Two-Stage Reaction

2021 ◽  
Vol 12 (3) ◽  
pp. 3150-3160

This study examines biodiesel production from crude palm oil (CPO) through an esterification reaction with methanol as a solvent and transesterification reactions catalyzed by calcium oxide (K2O). K2O catalyst synthesized from the oil palm empty fruit bunches ash (PEFB-ash) with impregnation method and calcined at a temperature of 700 ºC. The esterification reaction results showed that the free fatty acid content decreased from 5.47% to 0.57% at 60 ºC, while the results transesterification reaction showed the highest methyl ester content of 39.33% at optimal conditions, which was K2O catalyst amount of 3%. The GC-MS analysis results showed that as many as eleven fatty acid methyl esters were confirmed from biodiesel crude palm oil (CPO) based on their respective retention times and fragmentation patterns. The main components of the methyl ester formed include methyl hexadecanoic (17.75%), methyl 9.12-octadecadienoate (3.97%), and methyl 9-octadecenoate (12.06%). Biodiesel properties were examined using the American Society for Testing and Materials (ASTM-6751).

2014 ◽  
Vol 692 ◽  
pp. 133-138
Author(s):  
Athitan Timyamprasert ◽  
Vittaya Punsuvon ◽  
Kasem Chunkao ◽  
Juan L. Silva ◽  
Tae Jo Kim

The aim of this research was to develop a two-step technique to prepare biodiesel from waste palm oil (WPO) with high free fatty acid content. The developed process consists of esterification and transesterification steps. Response surface methodology (RSM) was applied for investigating the experimental design for esterification step. Design of experiment was performed by application of 5-levels-3-factors central composite design in order to study the optimum condition for decreasing FFA in WPO. The WPO with low FFA was further experimented in transesterification step to obtain fatty acid methyl ester (FAME). The investigated results showed that the WPO containing 48.62%wt of high FFA. The optimum condition of esterification step was 28 moles of methanol to FFA in WPO molar ratio, 5.5% sulfuric acid concentration in 90 min of reaction time and 60 °C of reaction temperature. After transesterification step, WPO biodiesel gave methyl ester content at 84.05% according to EN 14103 method. The properties of WPO methyl ester meet the standards of Thailand community biodiesel that can be used as fuel in agricultural machine.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Adewale Adewuyi ◽  
Paul O. Awolade ◽  
Rotimi Ayodele Oderinde

Oil was extracted from the seed of Hura crepitans using hexane in a soxhlet extractor and analyzed for iodine value, saponification value and free fatty acid content. The dominant fatty acid in the oil was C18:2 (52.8±0.10%) while the iodine value was 120.10±0.70 g iodine/100 g. Biodiesel was produced from the oil using a two-step reaction system involving a first step of pretreatment via esterification reaction and a second step via transesterification reaction. The pretreatment step showed that free fatty acid in Hura crepitans seed oil can be reduced in a one-step pretreatment of esterification using H2SO4 as catalyst. The biodiesel produced from Hura crepitans seed oil had an acid value of 0.21±0.00 mg KOH/g, flash point of 152 ± 1.10°C, copper strip corrosion value of 1A, calorific value of 39.10±0.30 mJ/kg, cetane number of 45.62±0.30, and density of 0.86±0.02 g cm−3. The process gave a biodiesel yield of 98.70±0.40% with properties within the recommended values of EN 14214.


2014 ◽  
Vol 917 ◽  
pp. 87-95 ◽  
Author(s):  
Suliana Abu Bakar ◽  
Suzana Yusup ◽  
Murni Melati Ahmad ◽  
Armando T. Quitain ◽  
Mitsuru Sasaki ◽  
...  

The production of biodiesel from crude palm oil (CPO) using microwave technique is investigated and has been compared with conventional heating. Two-step biodiesel production process is applied to maximize the highest biodiesel yield in short reaction time using microwave method. Sulfuric acid (H2SO4) as acid catalysts is used in pre-treatment of feedstock by esterification process followed by potassium hydroxide (KOH) as base catalyst for transesterification process with low methanol to oil ratio. The main purpose of the pre-treatment process is to reduce the free fatty acids (FFA) content of CPO from higher value of FFA content (>6.8%) to a minimum level for biodiesel production (<1%). Esterification and transesterification is carried out in fully instrumented and controlled microwave reactor system to get higher yield in shorter time. This two-step esterification and transesterification process showed that the maximum conversion of palm biodiesel obtained is 95.1% with the process conditions of methanol-to-oil molar ratio of 6:1, reaction temperature 65oC, reaction time 15min, and 2% (wt/wt) KOH amount using microwave method compared to conventional heating where the palm oil methyl ester (POME) yield obtained is 81% at the same conditions. The result showed that, the biodiesel production using microwave technique proved to be a fast and easy route to get high yields of biodiesel.


2013 ◽  
Vol 446-447 ◽  
pp. 1523-1527
Author(s):  
Krit Somnuk ◽  
Gumpon Prateepchaikul

Free fatty acid (FFA) in mixed crude palm oil (MCPO) must be reduced to less than 1 wt.% or 2 mgKOH.g-1of acid value by the acid-catalyzed esterification process when the base-catalyzed transesterification was used to produce the biodiesel for the two-stage process. This study was to investigate the effects of acid catalyst types: sulfuric acid (H2SO4), phosphoric acid (H3PO4), and hydrochloric acid (HCL) at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 vol.% of acid catalyst concentration on the reduction of acid value in MCPO by the continuous static mixer. Results indicated that H2SO4has the most significant variable affecting the acid value in MCPO. The acid catalyst concentration of 1.0 and 1.5 vol.% H2SO4can reduce the acid value to less than 2 mgKOH.g-1with 15 vol.% of methanol and 5-meter in the length of static mixer, while both H3PO4and HCL could not reduce the acid value was reduced to less than 2 mgKOH.g-1. Moreover, the results clearly indicated that HCL has the lowest significance effect on the acid value reduction in MCPO by the esterification reaction.


2014 ◽  
Vol 875-877 ◽  
pp. 1687-1692 ◽  
Author(s):  
Krit Somnuk ◽  
Gumpon Prateepchaikul

Biodiesel from a high free fatty acid (FFA) mixed crude palm oil (MCPO) can be produced to high fatty acid methyl ester (FAME) conversion by a two-step process. The first process is an acid-catalyzed esterification to reduce FFA in oil followed by a base-catalyzed transesterification process to produce biodiesel from esterified oil. In this study, the transesterification of esterified oil with methanol in the presence of potassium hydroxide (KOH) was performed in a 1,000 W ultrasonic homogenizer at a low frequency of 18 kHz. The use of high-intensity ultrasound to accelerate the reaction, the high surface power density of 1.62 W.mm-2 and the volumetric acoustic energy of 20 W.mL-1 were fixed. The objective of this study was to determine the various parameters (methanol concentration, KOH concentration, and initial temperature of oil) to produce the FAME conversion. The results showed that over 98 wt.% of FAME could be achieved with 5 g KOH/liter of oil, 15 vol.% of methanol, the total residence time of 20 seconds, and temperature of 30 oC. Moreover, the glycerides were rapidly converted to the FAME within reaction time of 10 seconds when the base-catalyst of 10 g KOH/liter of oil, and 20 vol.% of methanol were used. Consequently, the use of high-intensity ultrasonic irradiation can minimize the chemical cost, electricity cost, and reaction time.


2021 ◽  
Vol 12 (6) ◽  
pp. 8144-8151

A study on factors affecting biodiesel quality of agricultural by-products, namely palm oil derived using palm fatty acid distillate (PFAD), collected from the Oleen Palm Oil industrial refining plant. This PFAD showed free fatty acid content and a saponification value of 88.4 % and 204 mg KOH/g, respectively. An acid catalyst was successfully used to produce biodiesel in the esterification reaction, and a 97.11% conversion to biodiesel based on the European Standard EN 14214:2003 was achieved under the conditions (PFAD to methanol molar ratio 1:3.71 with 1.834 % H2SO4 catalyzed at 121 °C for 15 minutes). Overall, this novel process achieved highly enhanced FAME (95.82% to 97.31%) with a significantly increased reaction time (10 to 30 minutes) and catalyst requirements (1.834 % H2SO4).


Sign in / Sign up

Export Citation Format

Share Document