scholarly journals Call for papers on special issue “Advances in additive manufacturing: modeling, design, and application”

2020 ◽  
Vol 2 (1) ◽  
pp. 048-048

Aim & Scope: Additive Manufacturing (AM) is revolutionizing the manufacturing industry. Building parts layer by layer makes fabrication of geometries which were impossible otherwise. Freedom of fabrication, rapid and low-cost prototyping, and reduction in material waste are only a few of advantages that AM offers to many industries from biomedical to aeronautics. Hence, AM is getting lots of interest over the past few years. These combined with lower cost of 3d printers is making this pace even faster. To keep up with the advancements in AM, this special issue aims to publish high quality research articles in the field of additive manufacturing and its related topics. This includes but not limited to alloy design for AM, new AM technologies and process optimization, process-microstructure-property, characterization of AM parts, modeling AM processes, topology optimization, fatigue, fracture, and failure analysis, tailoring properties, and functionally graded materials through AM. New applications are welcome, as well. We kindly invite you to submit a manuscript(s) for this Special Issue. Full papers, communications, and reviews are all welcome.

Author(s):  
Ibrahim T. Ozbolat ◽  
A. K. M. B. Khoda

In this paper, a novel path planning approach is proposed to generate porous structures with internal features. The interconnected and continuous deposition path is designed to control the internal material composition in a functionally graded manner. The proposed layer-based algorithmic solutions generate a bilayer pattern of zigzag and spiral toolpath consecutively to construct heterogeneous three-dimensional (3D) objects. The proposed strategy relies on constructing Voronoi diagrams for all bounding curves in each layer to decompose the geometric domain and discretizing the associated Voronoi regions with ruling lines between the boundaries of the associated Voronoi regions. To avoid interference among ruling lines, reorientation and relaxation techniques are introduced to establish matching for continuous zigzag path planning. In addition, arc fitting is used to reduce over-deposition, allowing nonstop deposition at sharp turns. Layer-by-layer deposition progresses through consecutive layers of a ruling-line-based zigzag pattern followed by a spiral path deposition. A biarc fitting technique is employed through isovalues of ruling lines to generate G1 continuity along the spiral deposition path plan. Functionally graded material properties are then mapped based on a parametric distance-based weighting technique. The proposed approach enables elimination or minimization of over-deposition of materials, nonuniformity on printed strands and discontinuities on the toolpath, which are shortcomings of traditional zigzag-based toolpath plan in additive manufacturing (AM). In addition, it provides a practical path for printing functionally graded materials.


Additive Manufacturing (AM) is a tool less manufacturing process for building complex components layer by layer. Powder based AM techniques are used for producing porous and dense parts or products by Powder Bed Fusion (PBF) and powder blown Beam Deposition (BD) processes respectively suitable for different applications. The present review is mainly focused on the commercially available technology of powder blown Beam Deposition (BD) process for producing fully dense parts, and functionally graded materials used in automotive, aerospace, defense, and nuclear reactors. The properties of BD parts and comparison of the properties of BD parts with Selective Laser Melting (SLM), casting, and Acram's Electron Beam Melting (EBM) parts are presented. This paper provides an insight into the microstructural characteristics and mechanical properties of parts produced by BD process. A brief discussion is presented on challenging issues and applications of BD process. An attempt is made to present available and under development AM testing standards used to evaluate the properties of AM parts. This review also focused on porous parts produced by BD process for medical applications, and metal foil based BD process. Here, new developments in AM process like hybrid manufacturing and 4D printing are also discussed


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1368 ◽  
Author(s):  
Uwe Scheithauer ◽  
Steven Weingarten ◽  
Robert Johne ◽  
Eric Schwarzer ◽  
Johannes Abel ◽  
...  

2021 ◽  
Vol 14 ◽  
Author(s):  
Aniket Yadav ◽  
Piyush Chohan ◽  
Ranvijay Kumar ◽  
Jasgurpreet Singh Chohan ◽  
Raman Kumar

Background: Additive manufacturing is the most famous technology which requires materials or composites to be fabricated with layer by layer deposition strategy. Due to its lower cost, higher accuracy and less material wastage; this technology is used in almost every sector. But in many applications there is a need to alter the properties of a product in a certain direction with the help of some reinforcements. With the use of reinforcements, composite layers can be fabricated using additive manufacturing technique which will enhance the directional properties. A novel apparatus is designed to spray the reinforcement material into the printed structures in a very neat and precise manner. This spray nozzle is fully automated, which works according to tool-paths generated by slicing software. The alternate deposition of layers of reinforcement and build materials helped to fabricate customized composite products. Objective: The objective of present study is to design and analyze the working principle of novel technique which has been developed to fabricate composite materials using additive manufacturing. The apparatus is numerically controlled by computer according to CAD data which facilitates the deposition of alternate layers of reinforcement and matrix material. The major challenges during the design process and function of each component has been explored. Methods: The design process is initiated after comprehensive literature review performed to study previous composite manufacturing processes. The recent patents published by different patent offices of the world are studied in detail and analysis has been used to design a low cost composite fabrication apparatus. A liquid dispensing device comprises a storage tank attached with a pump and microprocessor. The microprocessor receives the signal from the computer as per tool paths generated by slicing software which decides the spray of reinforcements on polymer layers. The spraying apparatus moves in coordination with the primary nozzle of the Fused Filament Fabrication process. Results: The hybridization of Fused Filament Fabrication [process with metal spray process has been successfully performed. The apparatus facilitates the fabrication of low cost composite materials along with flexibility of complete customization of composite manufacturing process. The anisotropic behaviour of products can be easily controlled and managed during fabrication which can be used for different applications.


Author(s):  
Yuen-Shan Leung ◽  
Huachao Mao ◽  
Yong Chen

Functionally graded materials (FGM) possess superior properties of multiple materials due to the continuous transitions of these materials. Recent progresses in multi-material additive manufacturing (AM) processes enable the creation of arbitrary material composition, which significantly enlarges the manufacturing capability of FGMs. At the same time, the fabrication capability also introduces new challenges for the design of FGMs. A critical issue is to create the continuous material distribution under the fabrication constraints of multi-material AM processes. Using voxels to approximate gradient material distribution could be one plausible way for additive manufacturing. However, current FGM design methods are non-additive-manufacturing-oriented and unpredictable. For instance, some designs require a vast number of materials to achieve continuous transitions; however, the material choices that are available in a multi-material AM machine are rather limited. Other designs control the volume fraction of two materials to achieve gradual transition; however, such transition cannot be functionally guaranteed. To address these issues, we present a design and fabrication framework for FGMs that can efficiently and effectively generate printable and predictable FGM structures. We adopt a data-driven approach to approximate the behavior of FGM using two base materials. A digital material library is constructed with different combinations of the base materials, and their mechanical properties are extracted by Finite Element Analysis (FEA). The mechanical properties are then used for the conversion process between the FGM and the dual material structure such that similar behavior is guaranteed. An error diffusion algorithm is further developed to minimize the approximation error. Simulation results on four test cases show that our approach is robust and accurate, and the framework can successfully design and fabricate such FGM structures.


2021 ◽  
Vol 118 (5) ◽  
pp. 502
Author(s):  
Jiarong Zhang ◽  
Xinjie Di ◽  
Chengning Li ◽  
Xipeng Zhao ◽  
Lingzhi Ba ◽  
...  

Functional graded materials (FGMs) have been widely applied in many engineering fields, and are very potential to be the substitutions of dissimilar metal welding joints due to their overall performance. In this work, the Inconel625-high-strength low-alloy (HSLA) Steel FGM was fabricated by wire arc additive manufacturing (WAAM). The chemical composition distribution, microstructure, phase evolution and mechanical properties of the FGM were examined. With the increasing of HSLA Steel, the chemical composition appeared graded distribution, and the primary dendrite spacing was largest in graded region with 20%HSLA Steel and then gradually decreased. And the main microstructure of the FGM transformed from columnar dendrites to equiaxed dendrites. Laves phase precipitated along dendrites boundary when the content of HSLA Steel was lower than 70% and Nb-rich carbides precipitated when the content of HSLA Steel exceeded to 70%. Microhardness and tensile strength gradually decreased with ascending content of HSLA Steel, and had a drastic improvement (159HV to 228HV and 355Mpa to 733Mpa) when proportion of HSLA Steel increased from 70% to 80%.


2021 ◽  
Author(s):  
Fábio Silva Cerejo ◽  
Daniel Gatões ◽  
Teresa Vieira

Abstract Additive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material Extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2133
Author(s):  
Eva María Rubio ◽  
Ana María Camacho

The Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 29 contributions published in this Special Issue of Materials present cutting-edge advances in the field of manufacturing engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing of new materials, metrology and quality in manufacturing, industry 4.0, design, modeling, and simulation in manufacturing engineering and manufacturing engineering and society. Among them, these contributions highlight that the topic “additive manufacturing and 3D printing” has collected a large number of contributions in this journal because its huge potential has attracted the attention of numerous researchers over the last years.


Sign in / Sign up

Export Citation Format

Share Document