scholarly journals FEATURES OF USING AN UNMANNED AIRCRAFT IN EMERGENCY SITUATIONS

2020 ◽  
Vol 1 (1) ◽  
pp. 34-41
Author(s):  
S Mosov ◽  
V Neroba ◽  
O Sieliukov

The article identifies the conditions and factors that will affect the operation of unmanned aerial vehicles during its use in emergencies. The purpose of the study is to systematize the conditions and factors that will affect the functioning of specific technical means of surveillance installed on the unmanned aerial vehicle. The study of conditions and factors was carried out with a preliminary determination of the general indicators of efficiency of specific technical means of observation installed on the drone, which include: the probability of detection and recognition of the object by the operator (pilot-operator) on the display screen; the scale of the image on the display screen; viewing angle of the species technical means of observation; transverse capture of the area during aerial surveillance with the help of specific technical means; spectral range of operation of the species technical means of observation and the height of observation. According to the results of research, the conditions and factors include: unmanned aerial vehicle; set task for observation (monitoring); terrain features; control by the pilot (pilot-operator); weather conditions; gusts of wind; season; time of day; drone vibrations during flight; atmospheric turbulence; control of specific technical means of observation by the operator (pilot-operator); temperature regime; the presence of a library of signatures of the object of observation. It is concluded that the results of the study of conditions and factors that will affect the use of specific technical means of observation installed on an unmanned aerial vehicle are the basis for developing relevant requirements for specific technical means of observation of visible and infrared wavelengths of the electromagnetic spectrum. Further research should be carried out in the following areas: development or purchase of unmanned aerial vehicles for observation during the prevention and elimination of emergencies; development of libraries of signatures of objects of observation; research of possibilities of application of spectrozonal or multispectral species equipment for observation; creation of special training grounds for training and retraining of pilots and operators of unmanned aerial vehicles, etc.

Author(s):  
V. Neroba

The article investigates the conditions and factors that will affect the functioning of the specific mine exploration facilities when installed on an unmanned aerial vehicle. The analysis of conditions and factors was carried out with preliminary determination of the general performance indicators of the specific technical means of mine exploration, which include: the probability of detection and recognition of mines (contour of mines) by the operator (pilot operator) on the display screen; the scale of the image of the mine (contour of the mine) on the display screen; viewing angle of the specific technical means of exploration; transverse capture of terrain during aerial reconnaissance by means of a specific reconnaissance technical means; spectral range of operation of the specific technical means of exploration and height of exploration. As a result of the study, the following conditions and factors were included: unmanned aerial vehicle; the task of finding mines; features of the area where the mines are installed; pilot control (pilot); weather conditions; gusts of wind; season; time of day; use by the enemy of electronic suppression and electronic warfare, as well as conventional small arms against a drone; drones vibration during flight; turbulence of the atmosphere; the use of adversaries in the field of land mines and the creation of false minefields management of specific technical means of intelligence by the operator (pilot operator); temperature mode; availability of min signatures base. It is concluded that the results of the study of conditions and factors that will affect the functioning of the specific intelligence means are the basis for the development of relevant requirements for the specific intelligence means of the visible and infrared ranges of the electromagnetic spectrum.


Author(s):  
O. M. Pereguda ◽  
A. V. Rodionov ◽  
S. P. Samoilyk

The article proposes an approach to increasing the survivability of class I unmanned aerial vehicles in emergency operations which involves development of an onboard information system for identifying emergency occasions in flight and the synthesis of a control action on the unmanned aircraft in case of hazardous factors influence. As the result of the analysis of the main trends in the development of unmanned aerial vehicles onboard control systems, it was found that the leading countries are paying significant attention to increasing their intellectualization level. This is necessary to ensure the fulfilment of complex tasks that are assigned to modern unmanned aerial vehicles in the military and civilian spheres. The main directions of such researches are identifying the problem of swarm application of unmanned aerial vehicles and expanding the capabilities of onboard control systems maintain automatically the values of certain parameters when the flight conditions changes. As the approach to increasing the survivability of a class I unmanned aerial vehicle, a vision of an onboard information system for identifying emergency occasions in flight and synthesis of control action is proposed, the functional purpose of its components is described. It is suggested that this system will be comprised of a subsystem for identifying emergency cases in flight and determining the class I unmanned aerial vehicle threat level and a subsystem for synthesizing control action. Governing documents and regulations for the state aviation of Ukraine determines the list of aircraft emergency occasions. Article mentions the necessity of detailing emergency occasions in flight, which are typical for class I unmanned aerial vehicles and an approach to their classification is proposed. A vision of the nearest partial scientific tasks and a list of expected scientific results of research in this direction are given.


2020 ◽  
Vol 67 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Rashid K. Kurbanov ◽  
Olga M. Zakharova

The current level of technical development and accessibility allows to consider unmanned aerial vehicles as a reliable tool for operational monitoring of agricultural territories. Drones are able to observe territories that are inaccessible to helicopters and small aircrafts. The use of drones is associated with certain risks that affect flight safety. (Research purpose) To make recommendations on the preflight preparation of unmanned aerial vehicles. (Materials and methods) The authors used scientific literature, survey materials of domestic and foreign authors, websites of UAV manufacturers. (Results and discussion) The authors examined the issues of a drone registration, key parameters that influence data collection and ensure safe monitoring: operation and storage of drone batteries, visual inspection of a drone, sensors calibration, setting the “return home” point and checking the signal GPS/GLONASS communication quality, test flight, restricted areas and weather conditions. (Conclusions) It was established that UAV pre-flight preparation was an important stage in monitoring agricultural fields, which included a number of operations that were carried out with the aim of ensuring the safety of the operator and the unmanned aerial vehicle, as well as to obtain high-quality aerial photography materials. The authors determined that an unmanned aerial vehicle weighing from 250 grams to 30 kilograms was a object to be registered. They identified the need for specialized software, compliance with the rules of operation and storage of batteries, a thorough visual inspection of the drone, calibration of the compass; checking the setting of the return point to the beginning of the route, the GPS/GLONASS signal level, conducting a test flight, monitoring the readings of the inertial measuring unit and weather conditions, checking the zone of prohibited flights.


2013 ◽  
Vol 198 ◽  
pp. 194-199
Author(s):  
Andrzej Majka

Designing and building of the unmanned aircraft, especially light and ultra light vehicles, is mainly performed using the experience gained when constructing the flying models. There have not been uniform principles of building and exploiting of the mini and micro UAV (Unmanned Aerial Vehicle) in the form of regulations similar to those for manned airplanes. The unmanned vehicles of these classes in terms of their abilities and attractive price are more frequently exploited using the same air area as manned airplanes performing missions over the inhabited areas. An urgent necessity arises to work out the norms of flight suitability of the mini and micro unmanned aerial vehicles. The work contains the analysis of suitability of the current aviation regulations to determine the requirements for the mini unmanned vehicles. The work concentrates on the phenomenon of determining the symmetrical loads from the maneuvers and the turbulence atmosphere. The result of this analysis is the Limit Maneuver Envelope, Limit Gust Envelope and Limit Combined Envelope for mini UAV. The analyzed flight states allowed selecting the so called design cases which can become a basis for determining the norms of loading of mini unmanned aerial vehicles which can constitute the beginning of the regulations for building of the unmanned aerial vehicles of this class.


Aviation ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 79-85
Author(s):  
Mirosław Adamski

The article is an independent work containing the author’s ingenious research methodology and the model of the control system of Unmanned Aerial Vehicles. Furthermore a unique and world first mathematical model of an Unmanned Aerial Vehicle was developed, as well as a simulation program which enabled to investigate the control system of any Unmanned Aerial Vehicles in the tilt duct pitch (altitude), bank (direction), deviation and velocity, depending upon the variable values of the steering coefficient, reinforcement coefficient and the derivative constant. The research program was written in the language of the C++ as the MFC class, on the MS Visual Studio 2010 platform. The main issue resolved in the article is the pioneering research of the process of control during manual and semi-automatic guidance of the Unmanned Aerial Vehicle, with a jet propulsion system to the coordinates of preset points of the flight route. Modelling of the flight control system takes into account: the logical network of operations of the simulation program, the pilot-operator model, the set motion and control deviations as well as the flight control laws. In addition, modeling of the control system takes into account the drive model, engine dynamics, engine thrust, the model of steering actuators and the model of external loads. In contrast, the external load model takes into account the external forces acting on the unmanned aircraft, including gravitational forces and moments, aerodynamic forces and moments, aerodynamic drag, aerodynamic lateral forces, aerodynamic lift forces, aerodynamic heeling moment, mechanism of local angle of attack from damping torque and forces and moments from the engine.


Author(s):  
V. N. Evdokimenkov ◽  
M. N. Krasilshchikov ◽  
N. A. Lyapin

Actual level of unmanned aerial vehicles development allows us to consider them as an effective tool for solving a variety of civil and military tasks (primarily reconnaissance and strike). At the same time, one of the most important problems associated with the combat use of unmanned aerial vehicles remains to ensure their high survivability in organized counteraction conditions, the source of which can be both ground-based air defense and fighter aircraft (manned or unmanned). For this reason, the study and optimization of unmanned aerial vehicle evasion maneuvers from an enemy air attack remains relevant. In the article on the basis of game approach the algorithm of the unmanned aerial vehicle trajectory guaranteeing management providing its evasion from attack of the air opponent is offered. The study of unmanned aerial vehicle maneuverability tactically significant indicators influence on the effectiveness of the evasion maneuver. The results of simulation, demonstrated the influence of unmanned aerial vehicle maneuvering capabilities on achievement a positional advantage in order to solve the problem of evasion from enemy air attack, are presented. A series of computational experiments, whose results allow to assert that the use of the developed algorithm to guarantee control regardless of the relative initial state target UAV (Unmanned Aerial Vehicle) and UAV-interceptor with the comparability of their maneuvering capabilities in 73 % of cases provides the positional advantage of the target UAV, the UAV position relative to the interceptor makes inefficient use of the latest posted guided missiles, are performed. Note that the increase in the values of tactical indicators that reflect the maneuverability of the attacked UAV compared to the enemy, leads to the fact that in all cases, regardless of the initial position of the attacked UAV relative to the UAV-interceptor, it is ensured that it is brought beyond the zone of possible launches of guided missiles.


2021 ◽  
Vol 77 (4) ◽  
pp. 198-204
Author(s):  
Yuliya Atamanenko ◽  

An innovative approach to the process of recording administrative offenses by means of unmanned aerial vehicles will increase the level of organization of road safety, which is one of the urgent tasks of ensuring transport safety in Ukraine. The article investigates the theoretical and practical issues of application of the patented method of fixing road accidents and presents its main advantages in comparison with the existing traditional methods of fixing. Based on the data obtained as a result of aerial photography of an accident site by an unmanned aerial vehicle, the need to improve certain aspects of the patented methods is substantiated. Improving the method of recording road accidents is to use new modern methods and approaches that differ from traditional ones and conditionally divide the overall process into stages of recording. First of all, this is a preparatory stage, which is that an employee of the National Police of Ukraine, which carries out the registration of materials on administrative offenses under Art. 124 of the Administrative code, before the beginning of fixing a road accident with the use of unmanned aerial vehicles is recommended: to receive a conclusion on suitability for controlling an unmanned aerial vehicle from the Central medical flight commission; to undergo professional training in controlling an unmanned aerial vehicle; to get acquainted with the process of recording an accident using an unmanned aerial vehicle; to study in detail the recommendations on the choice of flight altitude during the registration of accidents and parameters related to the use of controlling an unmanned aerial vehicles in different weather conditions. So, in view of the quick and efficient examination of road transport accidents, it is recommended that an official vehicle of a member of the National Police of Ukraine will be equipped with a special complex, which will respond to the criterion "quality – price – technical characteristics". The comparative analysis of two ways of fixing road accidents by means of unmanned aerial vehicles in the form of a table is resulted; their primary advantages and lacks are specified. It is proved that the use of unmanned aerial vehicles is a requirement of today and meets the goal of ensuring transport safety in Ukraine.


2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


Author(s):  
E. G. Semenova ◽  
◽  
M. I. Bakustina ◽  

The article is devoted to the creation of a method for preparing an unmanned aerial vehicle for implementation as a finished packaged product. To achieve the goal, modern methods of standardization and quality control are used.


Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


Sign in / Sign up

Export Citation Format

Share Document