Recommendations for UAV Pre-Flight Preparation

2020 ◽  
Vol 67 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Rashid K. Kurbanov ◽  
Olga M. Zakharova

The current level of technical development and accessibility allows to consider unmanned aerial vehicles as a reliable tool for operational monitoring of agricultural territories. Drones are able to observe territories that are inaccessible to helicopters and small aircrafts. The use of drones is associated with certain risks that affect flight safety. (Research purpose) To make recommendations on the preflight preparation of unmanned aerial vehicles. (Materials and methods) The authors used scientific literature, survey materials of domestic and foreign authors, websites of UAV manufacturers. (Results and discussion) The authors examined the issues of a drone registration, key parameters that influence data collection and ensure safe monitoring: operation and storage of drone batteries, visual inspection of a drone, sensors calibration, setting the “return home” point and checking the signal GPS/GLONASS communication quality, test flight, restricted areas and weather conditions. (Conclusions) It was established that UAV pre-flight preparation was an important stage in monitoring agricultural fields, which included a number of operations that were carried out with the aim of ensuring the safety of the operator and the unmanned aerial vehicle, as well as to obtain high-quality aerial photography materials. The authors determined that an unmanned aerial vehicle weighing from 250 grams to 30 kilograms was a object to be registered. They identified the need for specialized software, compliance with the rules of operation and storage of batteries, a thorough visual inspection of the drone, calibration of the compass; checking the setting of the return point to the beginning of the route, the GPS/GLONASS signal level, conducting a test flight, monitoring the readings of the inertial measuring unit and weather conditions, checking the zone of prohibited flights.

2020 ◽  
Vol 1 (1) ◽  
pp. 34-41
Author(s):  
S Mosov ◽  
V Neroba ◽  
O Sieliukov

The article identifies the conditions and factors that will affect the operation of unmanned aerial vehicles during its use in emergencies. The purpose of the study is to systematize the conditions and factors that will affect the functioning of specific technical means of surveillance installed on the unmanned aerial vehicle. The study of conditions and factors was carried out with a preliminary determination of the general indicators of efficiency of specific technical means of observation installed on the drone, which include: the probability of detection and recognition of the object by the operator (pilot-operator) on the display screen; the scale of the image on the display screen; viewing angle of the species technical means of observation; transverse capture of the area during aerial surveillance with the help of specific technical means; spectral range of operation of the species technical means of observation and the height of observation. According to the results of research, the conditions and factors include: unmanned aerial vehicle; set task for observation (monitoring); terrain features; control by the pilot (pilot-operator); weather conditions; gusts of wind; season; time of day; drone vibrations during flight; atmospheric turbulence; control of specific technical means of observation by the operator (pilot-operator); temperature regime; the presence of a library of signatures of the object of observation. It is concluded that the results of the study of conditions and factors that will affect the use of specific technical means of observation installed on an unmanned aerial vehicle are the basis for developing relevant requirements for specific technical means of observation of visible and infrared wavelengths of the electromagnetic spectrum. Further research should be carried out in the following areas: development or purchase of unmanned aerial vehicles for observation during the prevention and elimination of emergencies; development of libraries of signatures of objects of observation; research of possibilities of application of spectrozonal or multispectral species equipment for observation; creation of special training grounds for training and retraining of pilots and operators of unmanned aerial vehicles, etc.


Author(s):  
Vitalii Larin ◽  
Nina Chichikalo ◽  
Georgii Rozorinov ◽  
Ekaterina Larina

This chapter describes two practical examples of sensors application on an unmanned aerial vehicle. The first device is a proximity sensor allowing users to measure the rotating angle of UAV's elevator. The second example discovers a measuring unit established on the UAV and processed measuring information for landing the UAV. To perform exactness control of unmanned aerial vehicles actuating mechanisms, the control system must be supplied by devices providing precision definition of values of current operation factors of those mechanisms.


2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


Author(s):  
E. G. Semenova ◽  
◽  
M. I. Bakustina ◽  

The article is devoted to the creation of a method for preparing an unmanned aerial vehicle for implementation as a finished packaged product. To achieve the goal, modern methods of standardization and quality control are used.


Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


Author(s):  
Salim A. Mouloua ◽  
James Ferraro ◽  
Mustapha Mouloua ◽  
P.A. Hancock

The present study was designed to examine the research trends in the literature focusing on Human Factors issues relevant to Unmanned Aerial Vehicle (UAV) systems. As these UAV technologies continue to proliferate with increasing autonomy and supervisory control requirements, it is crucial to evaluate the current and emerging research trends across the generations. This paper reviews the research trends of 228 papers matching our search criteria. The search retained only relevant and complete papers published over the past thirty years (1988-2017) in the Proceedings of the Human Factors and Ergonomics Society. Results were tabulated, graphed, and discussed based on research categories, topic areas, authors’ affiliation, and sources of funding. Results showed a substantial increase in the number of articles in the last two decades, with most papers driven by academic institutions and military and government agencies.


Author(s):  
S. Sakthi Anand ◽  
R. Mathiyazaghan

<p class="Default">Unmanned Aerial Vehicles have gained well known attention in recent years for a numerous applications such as military, civilian surveillance operations as well as search and rescue missions. The UAVs are not controlled by professional pilots and users have less aviation experience. Therefore it seems to be purposeful to simplify the process of aircraft controlling. The objective is to design, fabricate and implement an unmanned aerial vehicle which is controlled by means of voice recognition. In the proposed system, voice commands are given to the quadcopter to control it autonomously. This system is navigated by the voice input. The control system responds to the voice input by voice recognition process and corresponding algorithms make the motors to run at specified speeds which controls the direction of the quadcopter.</p>


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


2020 ◽  
Vol 26 (19-20) ◽  
pp. 1791-1803 ◽  
Author(s):  
Mohit Verma ◽  
Vicente Lafarga ◽  
Mael Baron ◽  
Christophe Collette

The advancement in technology has seen a rapid increase in the use of unmanned aerial vehicles for various applications. These unmanned aerial vehicles are often equipped with the imaging platform like a camera. During the unmanned aerial vehicle flight, the camera is subjected to vibrations which hamper the quality of the captured images/videos. The high-frequency vibrations from the unmanned aerial vehicle are transmitted to the camera. Conventionally, passive rubber mounts are used to isolate the camera from the drone vibrations. The passive mounts are able to provide reduction in response near the resonance. However, this comes at the cost of amplification of response at the higher frequency. This article proposes an active vibration isolation system which exhibits improved performance at the higher frequencies than the conventional system. The active isolation system consists of a contact-less voice coil actuator supported by four springs. Experiments are carried out to study the effect of vibrations on the quality of images captured. The characterization of drone vibrations is also carried out by recording the acceleration during different flight modes. The performance of the proposed isolation system is experimentally validated on a real drone camera subjected to the recorded drone acceleration spectrum. The isolation system is found to perform better than the conventional rubber mounts and is able to reduce the vibrations to a factor of one-fourth. It can be effectively used to improve the image acquisition quality of the unmanned aerial vehicles.


2018 ◽  
Vol 10 (12) ◽  
pp. 1877 ◽  
Author(s):  
William Emery ◽  
John Schmalzel

The recent proliferation of unmanned aerial vehicle (UAV) platforms has greatly increased our ability to remotely sense the Earth’s surface from the air at particularly low altitudes. [...]


Sign in / Sign up

Export Citation Format

Share Document