scholarly journals Analytical studies on constrained particle settling velocity in a water suspension of fly ash from thermal power plants

Author(s):  
V. P. Nadutyi ◽  
V. S. Kurilov ◽  
O. G. Cholyshkina ◽  
V. F. Hankevych

Purpose. To establish analytical dependences for calculating the characteristics of the ash suspension and the velocity of constrained settling of coal and quartz depending on the particle size and density of the medium, which is necessary for calculating the design and determining the operating modes of hydraulic devices for extracting coal from water mineral suspension of fly ash from thermal power plants. Methodology. The research was carried out on the basis of a cellular suspension model and classical concepts of constrained particle motion in laminar and turbulent flow. For analytical evaluation of the characteristics of the suspension, the defining correlations and the Wend formula for viscosity were used. The Ergun equation and correlation analysis methods were used to calculate and analyze the speed of constrained movement of ash suspension particles. Findings. Approximating nonlinear functions are obtained for determining the speed of constrained movement of coal and quartz particle size up to 4 mm in an ash suspension with a density of 1.31.8 g/cm3. It is shown that, for both settling and ascending of coal, there is a direct relationship between the velocity and particle size, in both cases it is nonlinear. For any coal size, the speed of ascent depending on the suspension density is of extreme nature; the rational density range is 1.551.8 g/cm3 with a maximum of 1.65 g/cm3. The established dependencies allow us to determine the size of coal and quartz particles, taking into account the counter-flow of the liquid phase, as well as the boundary size. Originality. For the regime of weak-turbulence flows there were established dependences and approximation equations of the constrained movement speed of coal and quartz particles the main components of the water suspension of fly ash from the Novo-Kramatorska TPP, depending on the size and density of the ash suspensions with changes in the characteristics of the medium depending on density. The frames of the Stokes description of processes are established. It is shown that the movement of the liquid phase in a counter-flow with precipitating particles is effective for surfacing of thin coal classes. Practical value. The described approach can be used for analytical evaluation of the characteristics and velocity of constrained movement in various water suspensions of discrete solid particles in weak-turbulence flows. The advantage is a wider coverage of hydraulic equipment operating modes. The results obtained are necessary for designing and determining the technological modes of operation of various hydraulic devices in the technology of complex processing of fly ash from TPPs.

2014 ◽  
Vol 1000 ◽  
pp. 162-165
Author(s):  
Lucie Vodová ◽  
Radomír Sokolař

Fluidized fly ash (class C according to ASTM) from thermal power plants Hodonin and Ledvice and stoneware clay B1 were used in the experimental work dealing with SO2 emissions during the firing at 1200°C. The aim of the work was to define the temperature at which sulphur dioxide begins to leak, and the leakage rate of SO2. It was found that temperature of decomposition of anhydrite depends on particle size. For milled fly ash is this temperature 150°C lower than for unmilled ashes. The addition of clay also decreases the temperature of decomposition. Sulphur dioxide begins to leak at 975 °C for samples with 40% addition of fly ash.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


2021 ◽  
Vol 11 (9) ◽  
pp. 3910
Author(s):  
Saba Shirin ◽  
Aarif Jamal ◽  
Christina Emmanouil ◽  
Akhilesh Kumar Yadav

Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.


2009 ◽  
Vol 6 (2) ◽  
pp. 511-517 ◽  
Author(s):  
S. Sarojini ◽  
S. Ananthakrishnasamy ◽  
G. Manimegala ◽  
M. Prakash ◽  
G. Gunasekaran

Fly ash is an amorphous ferroalumino silicate, an important solid waste around thermal power plants. It creates problems leading to environmental degradation due to improper utilization or disposal. However, fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of soils and is a source of readily available plant macro and micronutrients when it is used with biosolids. Supply of nutrients from fly ash with biosolids may enhance their agricultural use. The growth and reproduction ofEisenia fetidawas studied during vermicomposting of fly ash with cowdung and pressmud in four different proportions (T1,T2,T3& T4) and one controli.e.,cow dung and pressmud alone. The growth, cocoon and hatchlings production were observed at the interval of 15 days over a period of 60 days. The maximum worm growth and reproduction was observed in bedding material alone. Next to that the T1was observed as the best mixture for vermiculture.


1999 ◽  
Vol 09 (03n04) ◽  
pp. 417-422 ◽  
Author(s):  
V. VIJAYAN ◽  
S. N. BEHERA

Fly ash is a major component of solid material generated by the coal-fired thermal power plants. In India the total amount of fly ash produced per annum is around 100 million tonnes. Fly ash has a great potential for utilization in making industrial products such as cement, bricks as well as building materials, besides being used as a soil conditioner and a provider of micro nutrients in agriculture. However, given the large amount of fly ash that accumulate at thermal power plants, their possible reuse and dispersion and mobilization into the environment of the various elements depend on climate, soils, indigenous vegetation and agriculture practices. Fly ash use in agriculture improved various physico-chemical properties of soil, particularly the water holding capacity, porosity and available plant nutrients. However it is generally apprehended that the application of large quantity of fly ash in fields may affect the plant growth and soil texture. Hence there is a need to characterize trace elements of fly ash. The results of trace element analysis of fly ash and pond ash samples collected from major thermal power plants of India by Particle Induced X-ray Emission (PIXE) have been discussed.


2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


Author(s):  
Kavitha E ◽  
Karthik S ◽  
Eithya B ◽  
Seenirajan M

The quantity of fly ash produced from thermal power plants in India is approximately 80 million tons each year, and its percentage utilization is less than 10%. An attempt has been made to utilize these cheaper materials in concrete production. This thesis aims at investigating the characteristics of fresh concrete and various strengths of hardened concrete made with various mineral admixtures such as fly ash. GGBFS, silica fume. Rice husk ash along with polypropylene fibres in various proportions.  M20 grade concrete is considered for experimental studies with 53grade Ordinary Portland Cement blended with varying percentages of mineral admixtures. The maximum size of coarse aggregate used is 20mm.  Various mineral admixtures such as fly ash. GGBFS.Silica fume. Rice Husk Ash were added concrete in various percentages by partially replacing cement and the optimum percentage of the mineral admixtures will be found.  Based on the obtained values, the admixture with maximum mechanical strength is determined and to this polypropylene fibre is added by varying 0 to 0.5 % by weight of cement to the mix.  The test results obtained were compared and discussed with conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document