Behavior of Class C Fly Ash during Firing at High Temperatures

2014 ◽  
Vol 1000 ◽  
pp. 162-165
Author(s):  
Lucie Vodová ◽  
Radomír Sokolař

Fluidized fly ash (class C according to ASTM) from thermal power plants Hodonin and Ledvice and stoneware clay B1 were used in the experimental work dealing with SO2 emissions during the firing at 1200°C. The aim of the work was to define the temperature at which sulphur dioxide begins to leak, and the leakage rate of SO2. It was found that temperature of decomposition of anhydrite depends on particle size. For milled fly ash is this temperature 150°C lower than for unmilled ashes. The addition of clay also decreases the temperature of decomposition. Sulphur dioxide begins to leak at 975 °C for samples with 40% addition of fly ash.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
A. Binal

Contemporarily, there are 16 coal-burning thermal power plants currently operating in Turkey. This number is expected to rise to 46 in the future. Annually, about 15 million tons of fly ash are removed from the existing thermal power plants in Turkey, but a small proportion of it, 2%, is recyclable. Turkey’s plants are fired by lignite, producing Class C fly ash containing a high percentage of lime. Sulfate and alkali levels are also higher in Class C fly ashes. Therefore, fly ash is, commonly, unsuitable as an additive in cement or concrete in Turkey. In this study, highly alkaline fly ash obtained from the Yeniköy thermal power plants is combined with soil samples in different proportions (5%, 10%, 15%, 20%, and 25%) and changes in the geomechanical properties of Ankara clay were investigated. The effect of curing time on the physicomechanical properties of the fly ash mixed soil samples was also analyzed. The soil classification of Ankara clay changed from CH to MH due to fly ash additives. Free swelling index values showed a decrease of 92.6%. Direct shear tests on the cohesion value of Ankara clay have shown increases by multiples of 15.85 and 3.01 in internal friction angle values. The California bearing ratio has seen a more drastic increase in value (68.7 times for 25% fly ash mix).


1999 ◽  
Vol 09 (03n04) ◽  
pp. 417-422 ◽  
Author(s):  
V. VIJAYAN ◽  
S. N. BEHERA

Fly ash is a major component of solid material generated by the coal-fired thermal power plants. In India the total amount of fly ash produced per annum is around 100 million tonnes. Fly ash has a great potential for utilization in making industrial products such as cement, bricks as well as building materials, besides being used as a soil conditioner and a provider of micro nutrients in agriculture. However, given the large amount of fly ash that accumulate at thermal power plants, their possible reuse and dispersion and mobilization into the environment of the various elements depend on climate, soils, indigenous vegetation and agriculture practices. Fly ash use in agriculture improved various physico-chemical properties of soil, particularly the water holding capacity, porosity and available plant nutrients. However it is generally apprehended that the application of large quantity of fly ash in fields may affect the plant growth and soil texture. Hence there is a need to characterize trace elements of fly ash. The results of trace element analysis of fly ash and pond ash samples collected from major thermal power plants of India by Particle Induced X-ray Emission (PIXE) have been discussed.


2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


2021 ◽  
Vol 96 (4) ◽  
pp. 107-112
Author(s):  
YU.S. FILIMONOVA ◽  
◽  
E.G. VELICHKO ◽  

Modification of the composition and structure of heavy concrete with the use of a complex chemical-mineral additive consisting of fly ash from thermal power plants, a superplasticizer, a high-valence hardening accelerator AC and a fine-dispersed clinker component is considered. Modified concrete is characterized by an increase in compressive strength at a brand age by 67%, a decrease in the water content of a concrete mixture by 13.6% and an improvement in its workability by 11-12 cm. With the combined use of a superplasticizer and a high-valence hardening accelerator AC a significant synergistic effect is observed in the format of enhancing their plasticizing effect. The high efficiency of the application of the mixed-dispersed clinker component has been established.


2019 ◽  
Vol 296 ◽  
pp. 149-154
Author(s):  
Radomír Sokolář ◽  
Martin Nguyen

Fluid fuel combustion technology in coal-fired power plants is very popular in the Czech Republic, resulting in a relatively high production of a specific by-product - fluidized fly ash (class C according to ASTM definition), which differs from the classical high-temperature fly ash in mineralogical composition with a high sulphur content of anhydrite CaSO4. Fluidized ash is not yet used in the production of fired building materials, where it could be used as a source of calcium oxide (for example, the production of porous ceramic tiles). However, high volume of sulphur dioxide emissions during the re-firing of fluidized fly ash in ceramic raw materials mixtures has been solved. The aim of the paper is definition of temperature ranges of anhydrite decomposition (formation of SO2 emission) from pure class C (fluidized) fly ashes from different sources (power plants) depending on granulometry of fly ash especially.


2019 ◽  
Vol 9 (9) ◽  
pp. 1964 ◽  
Author(s):  
Dinh-Hieu Vu ◽  
Hoang-Bac Bui ◽  
Bahareh Kalantar ◽  
Xuan-Nam Bui ◽  
Dinh-An Nguyen ◽  
...  

Coal-fired power stations are one of the primary sources of power generation in the world. This will produce considerable amounts of fly ash from these power stations each year. To highlight the potential environmental hazards of these materials, this study is carried out to evaluate the characterization of fly ashes produced in thermal power plants in northern Vietnam. Fly ash was firstly fractionated according to size, and the fractions were characterized. Then, each of these fractions was analyzed with regard to their mineralogical features, morphological and physicochemical properties. The analytical results indicate a striking difference in terms of the characteristics of particles. It was found that magnetic fractions are composed of magnetite hematite and, to a lower rate, mullite, and quartz. Chemical analyses indicate that the non-magnetic components mainly consist of quartz and mullite as their primary mineral phases. As the main conclusion of this research, it is found that the magnetic and non-magnetic components differ in terms of shape, carbon content and mineralogical composition. In addition, it was found that magnetic components can be characterized as more spheroidal components compared to non-magnetic ones. This comprehensive characterization not only offers a certain guideline regarding the uses of different ash fractions but it will also provide valuable information on this common combustion process.


2018 ◽  
Vol 276 ◽  
pp. 110-115
Author(s):  
Martin Ťažký ◽  
Martin Labaj ◽  
Rudolf Hela

The by-products of energy industry are nowadays often affected by new limits governing the production of harmful gases discharged into the air. These stricter and stricter criteria are often met by electricity producers by changing the combustion process in thermal power plants itself. Nowadays, the SNCR (selective non-catalytic reduction) application is quite common in the combustion process in order to help reduce the nitrogen oxide emission. This article deals with the primary measures of thermal power plants, which in particular consist of a modified treatment of raw materials (coal) entering the combustion process. These primary measures then often cause the formation of fly ash with unsuitable fineness for the use in concrete according to EN 450. The paper presents the comparison of the physico-mechanical parameters of several fly ashes with a different fineness values. The primary task is to assess the impact of non-suitable granulometry in terms of EN 450 on the other physico-mechanical parameters of fly ashes sampled within the same thermal power plant. Several fly ashes produced in the Czech Republic and surrounding countries were evaluated in this way.


Sign in / Sign up

Export Citation Format

Share Document