Combining ability and heterosis studyin maize inbreds throughout diallel mating design

2018 ◽  
Vol 43 (4) ◽  
pp. 599-609
Author(s):  
ANMS Karim ◽  
S Ahmed ◽  
AH Akhi ◽  
MZA Talukder ◽  
A Karim

Combining ability effects were estimated for grain yield and some other important agronomic traits of maize in a 7×7 diallel analysis excluding reciprocals. The variances for general combining ability (GCA) were found significant for yield, days to pollen shedding, days to silking and ear height while it was found non-significant for plant height and number of kernels/ear. Non-significant general combining ability (GCA) variance for plant height and number of kernels/ear indicates that these two traits were predominantly controlled by non- additive type of gene action. Specific combining ability (SCA) was significant for all the characters except yield and days to silking. Non-significant specific combining ability (SCA) variance for yield and days to silking suggests that these two traits were predominantly controlled by additive type of gene action. Both GCA and SCA variances were found significant only in days to pollen shedding and ear height indicated the presence of additive as well as non additive gene effects for controlling the traits. However, relative magnitude of these variances indicated that additive gene effects were more prominent for all the characters studied except days to silking. Parent BIL95 was the best general combiner for both high yield and number of kernels/ear and parent BML4 for dwarf plant type. Two crosses (BML4× BML36 and BIL114× BIL31) exhibited significant and positive SCA effects for grain yield involved low × average and average × average general combining parents. The range of heterosis expressed by different crosses for grain yield and days to silking was from -65.83 to 21.26 percent and -17.85 to 8.22 percent, respectively.. The better performing three crosses (BIL114×BIL31, BIL138×BIL95 and BIL31×BIL95) can be utilized for developing high yielding hybrid varieties as well as for exploiting hybrid vigour.Bangladesh J. Agril. Res. 43(4): 599-609, December 2018

2020 ◽  
pp. 5-14
Author(s):  
Maamoun A. Abdel-Moneam ◽  
M. S. Sultan ◽  
Waleed A. E. Abido ◽  
Ágnes Hadházy ◽  
S. A. Sadek ◽  
...  

Combining ability estimation is an important genetic attribute for maize breeders in anticipating improvement in productivity via hybridization and selection. This research was carried out to investigate the genetic structure of the 27 F1 maize hybrids established from nine lines derived from Maize Research Department and three testers, to determine general combining ability (GCA), determine crosses showing specific combining ability (SCA) and superiority percentages for crosses. Nine lines, three testers, 27 F1 hybrids and two check commercial hybrids (SC162 and SC168) were studied in randomized complete block Design (RCBD) with three replications during 2016. The results of mean squares showed that significant and highly significant for most studied traits (days to 50% tasseling, days to 50% silking, plant and ear height, ear position, ear length, no. of kernels per row, 100-kernel weight and Grain yield). Estimates of variance due to GCA and SCA and their ratio revealed predominantly non-additive gene effects for all studied traits. Lines with the best GCA effects were: P2 (line 11) and P6 (line 21) for grain yield, for testers Gm174 and Gm1021 had significant GCA effects for grain yield. The hybrids P5×Gm1021, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1002 had significant and negative SCA effects for grain yield. Crosses P1×Gm174, P2×Gm1002, P5×Gm1021, P6×Gm174, P6×Gm1021, P7×Gm1021, P8×Gm1002, P9×Gm1021 were the best combinations manifested and significant superiority percentages over than check varieties (SC162 and SC168) for most studied traits. Therefore, these hybrids may be preferred for hybrid crop development. Abbreviations: GCA general combining ability; SCA specific combining ability


Author(s):  
Anamika Nath ◽  
S. R. Maloo ◽  
Baudh Bharti ◽  
R. B. Dubey ◽  
Rajani Verma

A diallel method was employed in which eight genotypically diverse lines of mungbean were crossed among themselves in all possible combinations excluding reciprocals. The mean square due to general combining ability (GCA) and specific combining ability (SCA) were significant for all the characters except mean square due to (SCA) for clusters per plant and seed yield per plant indicating importance of both additive as well as non-additive gene action. The estimates of variances due to specific combining ability were higher than general combining ability for all the traits except days to 50 % flowering, primary branches per plant, clusters per plant and seed yield per plant pointed out to be the preponderance of non-additive gene effects in the expression of these characters. Whereas predictability ratios were greater than the value of 0.5 for days to 50 % flowering, primary branches per plant, clusters per plant and seed yield per plant indicating the predominance of additive gene action for these characters. However, predictability ratio exhibited less than 0.5 values for rest of the characters indicating the predominance of non- additive gene action. The good general combiners for seed yield per plant were BM-4, PDM-139, ML-131, and IPM 99-125. The best specific cross combinations wereRMG-344 x RMG-1045, RMG-1035 x RMG-1045 and BM-4 x PDM-139. showed the highest positive significant SCA effect for seed yield per plant. These cross combinations could be utilized for further use in breeding programme for improvement in yield of mungbean.


2017 ◽  
Vol 9 (1) ◽  
pp. 60-67
Author(s):  
Navin Chander Gahtyari ◽  
P. I. Patel ◽  
Rakesh Choudhary ◽  
Sudhir Kumar ◽  
Naveen Kumar ◽  
...  

Line x tester analysis using a set of four females, ten males and their forty hybrids was carried out to esti-mate the general combining ability of parents and specific combining ability of hybrids for yield and ten other associ-ated components in rice (Oryza sativa L.) in a Randomized Block Design during Kharif 2011. GCA variances for females (s2f) were significant at 0.1% level of significance for plant height (40.8), no. of grains per panicle (505.9), grain yield per plant (29.1), test weight(17.9), straw yield per plant (61.3) and kernel L/B ratio (0.2) whereas specific combining ability (SCA) variances for f x m interactions were highly significant for all the characters. Non-additive gene action was prevalent in all characters (Range: 0.03 in amylose content to 0.88 in kernel length breadth ratio) except plant height (1.33) as evident by low GCA to SCA ratio. None of the parents were good general combiner for all traits, however, female IR-28 and male AMT-119 and PNR-546 were good general combiners for a maximum number of traits i.e. five traits out of eleven.. The general combining ability for grain yield per plant for female parent Gurjari (6.19) and NVSR-178 (5.29); and male parents AMT 119 (2.73) and PNR 546 (2.44) makes them a good choice for improving yields in a hybridization programme as these female and male parents are also having signifi-cant GCA effects for maximum number of yield associated traits i.e. four and five traits out of eleven for female and male parents respectively. A vis-à-vis comparison of top three specific combining ability crosses with their mean performance showed correlation and these crosses were having at least one good general combining ability parent.


2019 ◽  
Vol 44 (2) ◽  
pp. 253-259
Author(s):  
HZ Raihan ◽  
S Sultana ◽  
M Hoque

An experiment on combining ability was carried out with 21 crosses produced from 7×7 diallel cross without reciprocal for grain yield and yield contributing characters in maize. Analysis of variance for combining ability showed that mean square (MS) due to GCA & SCA were highly significant for all characters except GCA in plant height, cob length and 1000 grain weight and SCA in maturity and row/cob indicated that all but mentioned traits were governed by both additive and non-additive gene action. Variances due to GCA were higher for all characters except thousand grain weight revealed that the predominance of additive gene action for all characters except thousand grain weight. Parent CML 487 and Ki 21 were the best general combiner for yield and most of the yield contributing characters. Parent BMZ 57 & BMZ 15 were the best general combiner for dwarf & earliness in plant. Among all the crosses CML 473 × Ki 21, CML 487 × Ki 21 and CML 429 × BIL 182 exhibited significant positive SCA effect for grain yield. The cross CML 429 × BIL 182 may be considered as the best cross with recorded significant mean value and desired SCA for traits like 1000 grain weight, yield (t/ha), days to 50% pollen shedding, days to 50% silking, plant height, ear height and days to maturity. The promising single crosses with significant and positive SCA could be used for variety development after verifying them across locations. Bangladesh J. Agril. Res. 44(2): 253-259, June 2019


2021 ◽  
Vol 21 (No.1) ◽  
Author(s):  
Max Mariz ◽  
Reham Gibely ◽  
Abdelmoghny AM

The aim of this study was to investigate the relationship between specific combining ability, genetic diversity of parents and heterosis over better parent effects. This research, having eighteen F1 crosses derived from crossing between six lines and three testers, was conducted in order to estimate combining ability, to determine the nature of gene action and heterosis for yield and fiber quality traits and to detect the appropriate crosses for cotton breeding program. The experiment was conducted on randomized complete block design with three replications. The analyses of variance showed significant differences among the genotypes, parents (lines and testers) and crosses for all the studied traits. Estimates of both general and specific combining ability effects were significant for most traits, indicating the importance of both additive and non-additive gene effects for these traits. While, specific was higher than general combining ability variances, for all traits, showing non-additive gene action controlling and therefore, heterosis breeding may be rewarding. The heterosis value varied from cross to cross and from trait to trait. This dissimilarity coefficient was ranged from 3.234 between Giza 85 and Giza 80 to 71.002 between Giza 96 and 10229. Association between heterosis over better parent and specific combining ability was positive and significant for all the studied traits except lint yield / plant. No correlations were found between SCA and GD for all the studied traits. Similarly, heterosis effects was negatively significantly correlated with GD only in the case of boll weight, lint yield / plant and uniformity ratio %, while showed positive and significant correlation for fiber strength and micronaire value. Four crosses showed both positive and significant heterosis and specific combining ability for most yield traits. The parents of these crosses belong to different clusters. Crossing diverse parents could produce high heterotic performance in hybri


2017 ◽  
Vol 9 (1) ◽  
pp. 406-414
Author(s):  
J. P. Aditya ◽  
Anuradha Bhartiya

Combining ability for grain yield and its component characters in rainfed upland rice (Oryza sativa L.) were studied during Kharif 2014 using half diallel involving ten parents viz., VL Dhan 221, Vivek Dhan 154, VL 30240, VL 7620, VL 30560, VL 8116, VL 8549, VL 8724, VL 8732 and Sukradhan1. Both general combining ability (gca) and specific combining ability (sca) variances were found to be highly significant for the characters viz., plant height (gca=85.42; sca=23.12), days to 50% flowering (gca=101.61; sca=42.61), days to maturity (gca=90.37; sca=37.73), tillers per plant (gca=4.63; sca=1.38), panicle per plant (gca=2.36; sca=0.90),kernel length (gca=28.88; sca=23.61), kernel width (gca=1.64; sca=1.92),1000 grain weight (gca=3.60; sca=4.91), grain yield per plot (gca=8.57; sca=3.03), fertile grains per panicle (gca=690.67; sca=300.95) and grains per panicle (gca=1050.58; sca=437.75) indicating the importance of additive and non-additive gene actions in the expression of these traits. However, predominance of non-additive gene action was recorded for all the characters. Parents VL Dhan 221, VL 7620, VL 30560, Sukradhan 1 were good general combiners for grain yield and related characters. VL Dhan 221 and Vivek Dhan 154 were good general combiners for plant height and earliness. On the basis of specific combining ability effects, cross combinations Vivek Dhan 154 x VL 8549, VL 7620 x VL 30560, VL 8549 x VL 8732, VL 30560 x VL 8116 and VL 30240 x VL 8116 were the best specific combiner for grain yield per plot and other associated characters viz., plant height, days to 50% flowering, days to maturity, kernel length and kernal width.


2016 ◽  
Vol 41 (2) ◽  
pp. 365-376 ◽  
Author(s):  
M Hoque ◽  
F Akhter ◽  
M Kadir ◽  
HA Begum ◽  
S Ahmed

An experiment was carried out in 6x6 diallel crosses for combining ability analysis for grain yield, maturity and growth parameters in maize. Analysis of variance for combining ability showed that mean square value due to GCA & SCA were highly significant for all characters except SCA in days to tasseling and days to maturity indicated that all but two traits were governed by both additive and non-additive gene action. Variances due to GCA were much higher in magnitude than SCA indicated additive gene effects were much more important for all characters except cob length, thousand grain weight and ear height. The Parent P5 was the best general combiner for yield and most of the yield contributing characters. The Parent P1 & P2 were best general combiner for both dwarf and earliness. The crosses showing significant SCA effects for yield involving average x average, average x low and low x low general combining parents. The crosses P3xP6 & P4xP5 showed either significantly or numerically higher heterosis than checks BHM-5, BHM- 7 & BHM-9 for yield.Bangladesh J. Agril. Res. 41(2): 365-376, June 2016


2013 ◽  
Vol 20 (1) ◽  
pp. 13-18
Author(s):  
P. S. Biswas ◽  
A. W. Julfiquar ◽  
M. Wazuddin

General and specific combining ability effects were estimated from a 5 line × 8 tester crosses to explore the genetic behavior of CMS and restorers in rice. The variance for GCA and SCA showed predominance of non-additive gene action for all the ten morpho-physiological traits. The estimates of GCA effects revealed that none of the parent was general combiner for all the traits in desired direction. Gan46A and BR827R were good general combiners for higher grain yield coupled with earliness, and IR46R and BR168R was good general combiner for grain yield and lateness in maturity. Good x poor general combiners (Gan46A × Gui99R) for grain yield produced the best specific cross for higher grain yield coupled with earliness, longer panicle, panicles/plant, filled grains/panicle and less sterility (%). Additive × additive, additive × dominance and dominance × dominance gene interactions were involved in deriving good specific cross for grain yield.DOI: http://dx.doi.org/10.3329/bjpbg.v20i1.17013


Author(s):  
M. I. Abo- Yousef ◽  
W. F. Ghidan ◽  
I. A. Talha ◽  
A. B. Elsehely ◽  
Dalia M. Tabl

An understanding the nature and relative extent of gene actions and combining ability is useful for a breeder to develop superior rice hybrids. In this association, an attempt was made to identify good general and specific combiners for selecting better parents and better cross combinations for developing high yielding and short duration rice hybrids. Four cytoplasmic male sterile lines viz., IR69625A, IR70368A, IR58025A and IR79575A were crossed with ten elite testers, 40 hybrids along with their fourteen parents were evaluated for grain yield and its related traits at the experimental farm of Rice Research and Training Center, Sakha, Kafr El-Sheikh, Egypt, during the rice-growing seasons of 2018 and 2019. The differences among genotypes, parents and crosses were highly significant for all studied traits. The specific combining ability (SCA) played the major role in determining inheritance traits, revealing that the largest part of the total genetic variability associated with most traits was a result of non-additive gene action. The parental line, IR58025A was demonstrated as a great general combiner for grain yield per plant and most of yield components and therefore could be utilized in future breeding programs to improve grain yield. HHZ12-SAL8-Y1-SAL1, HHZ5-Y7-Y2-SUB1 and HUA564 were seen as a good general combiner among testers for grain yield per plant and some studied traits. Four crosses, namely IR58025A / HHZ8-SAL9-DT2-Y2, IR70368A / WEED TOLERANT RICE1, IR70368A / HHZ12-SAL8-Y1-SAL1 and IR70368A / HHZ5-Y7-Y2-SUB1 exhibited significantly good specific combining ability effects for grain yield per plant. Hence, it can be seen that non-additive genetic effects are controlling the inheritance of the studied traits and indicated that selection for the traits inherited with this manner should be performed in the further generations.


HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1315-1317 ◽  
Author(s):  
Yayeh Zewdie ◽  
Paul W. Bosland ◽  
Robert Steiner

The inheritance of capsaicinoid content was studied in five Capsicum pubescens Ruiz & Pav. genotypes using diallel analysis. General combining ability and specific combining ability effects were significant for all capsaicinoids studied, indicating additive and nonadditive gene actions are present. The association of high capsaicinoid contents with high positive general combining ability of the parents also indicates the predominance of additive gene action in capsaicinoid inheritance. Because of the predominant additive gene effect, recurrent selection would be a good breeding method to increase capsaicinoid level in the population studied. Heterosis was observed in hybrids for some of the capsaicinoids, suggesting that F1 hybrids could also be used to increase capsaicinoid content.


Sign in / Sign up

Export Citation Format

Share Document