scholarly journals Genome size determination of Eclipta alba and Aloe barbadensis

2015 ◽  
Vol 10 (3) ◽  
pp. 697
Author(s):  
Anggana Roy ◽  
Yasir Bashir ◽  
Irfan Ahmad Rather ◽  
Bolin Kumar Konwar

<p class="Abstract">There is abundant genetic diversity of pharmacologically important plants around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. The major cause of such genetic diversity is the variation in their genetic material, as called genome. In the present study, an attempt was made to determine the genome size of <em>Eclipta alba</em> and <em>Aloe barbadensis</em> by flow cytometry using Pisum sativum as a reference standard. The nuclear DNA was calculated as 8.7 pg for <em>E. alba</em> and 9.0 pg for <em>A. barbadensis</em>. The genome size of <em>E. alba</em> and <em>A. barbadensis</em> was estimated to be 4.27 x 10<sup>9</sup> bp and 4.42 x 10<sup>9</sup> bp, respectively. Information on genome size and DNA content of these two pharmacologically important plants would provide a useful tool for future molecular biological investigations.</p><p> </p>

2020 ◽  
Vol 4 (2) ◽  
pp. 72-75
Author(s):  
Mohd Razik Midin ◽  
Muhammad Irfan Fikri ◽  
Siti Sarah Zailani

AbstractChristia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.


Caryologia ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 109-116
Author(s):  
Fahimeh Fallah ◽  
Farrokh Ghahremaninejad

Genome size is a helpful tool for circumscribing taxa at diverse taxonomic degrees (mostly species) and resolving intricate low-level taxonomies. The correct genome size in Hedera (Araliaceae) has long been discussed, and the ploidy levels of some taxa are still unclear. Twelve accessions of Hedera were measured via flow cytometry. Flow cytometry is a relatively rapid, inexpensive, and credible tool. Fresh leaves of Hedera samples and internal reference standard parsley (Petroselinum crispum) were stained with propidium iodide (PI). Flow cytometry measurements showed that for the accessions of 2CV (3.09 - 6.40 pg), the lowest amount of nuclear DNA was 3.09 pg for Hedera crebrescens (So), while the highest amount was 6.40 pg for H. hibernica “Hamilton,” representing a statistically significant difference. According to this study, the new taxon (H. crebrescens) is a diploid, though this taxon was previously considered H. hibernica (tetraploid).


2014 ◽  
Vol 92 (10) ◽  
pp. 847-851 ◽  
Author(s):  
Kelly L. Mulligan ◽  
Terra C. Hiebert ◽  
Nicholas W. Jeffery ◽  
T. Ryan Gregory

Ribbon worms (phylum Nemertea) are among several animal groups that have been overlooked in past studies of genome-size diversity. Here, we report genome-size estimates for eight species of nemerteans, including representatives of the major lineages in the phylum. Genome sizes in these species ranged more than fivefold, and there was some indication of a positive relationship with body size. Somatic endopolyploidy also appears to be common in these animals. Importantly, this study demonstrates that both of the most common methods of genome-size estimation (flow cytometry and Feulgen image analysis densitometry) can be used to assess genome size in ribbon worms, thereby facilitating additional efforts to investigate patterns of variability in nuclear DNA content in this phylum.


2021 ◽  
Vol 5 (1) ◽  
pp. 14-16
Author(s):  
Raden Muhamad Imaduddin Yumni ◽  
Mohd Fauzihan Karim ◽  
Mohd Razik Midin

The family of Cucurbitaceae consists of species with economical and nutritional value. Morphologically, there are only few differences between Cucumis species. The interspecific and intraspecific variation in the genome size of the Cucumis species are not discovered yet. Due to this, this study aims to determine the genome size of C. sativus, C. melo inodorus and C. melo cantalupensis using flow cytometry (FCM) method. Nuclei suspension of selected Cucumis species were extracted using LBO1 lysis buffer by manual chopping technique and stained by propidium iodide priot to FCM analysis. Genome size of C. sativus, C. melo inodorus (Honeydew) and C. melo cantalupensis (Rockmelon) were determined by using Glycine max (Soybean) as an external reference standard (2C = 2.5 pg). This study found that the genome size of C. sativus, C. melo inodorus and C. melo cantalupensis estimated to be 2.83 pg, 3.00 pg and 3.47 pg respectively. The genome size data obtained from this study can be used in future genome studies as well as species characterization.


Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 730-735 ◽  
Author(s):  
Juha Kankanpää ◽  
Alan H. Schulman ◽  
Leena Mannonen

Hordeum, distributed worldwide in temperate zones, is the second largest genus in the tribe Triticeae and includes diploid, tetraploid, and hexaploid species. We determined, by DAPI staining and flow cytometry, the nuclear DNA content for 35 accessions of the genus Hordeum, from a total of 19 species, including specimens of 2 cultivars and 2 landraces of Hordeum vulgare ssp. vulgare as well as samples of 12 Hordeum vulgare ssp. spontaneum populations. Genome sizes ranged from 5.69 to 9.41 pg for the G1 nuclei of the diploids, and from 13.13 to 18.36 pg for those of the tetraploids. This constitutes a 1.7-fold variation for the diploids, contrasting with a 4% variation previously reported. For H. vulgare ssp. vulgare (barley), the accessions examined differed by 18%. These variations in genome size cannot be correlated with meiotic pairing groups (I, H, X, Y) or with proposed phylogenetic relationships within the genus. Genome size variation between barley accessions cannot be related to status as cultivated or wild, or to climatic or geological gradients. We suggest these data may indicate rapid but sporadic changes in genome size within the genus. Key words : barley, Hordeum, Triticeae, genome size, flow cytometry.


2005 ◽  
Vol 95 (4) ◽  
pp. 309-312 ◽  
Author(s):  
J.K. Brown ◽  
G.M. Lambert ◽  
M. Ghanim ◽  
H. Czosnek ◽  
D.W. Galbraith

AbstractThe nuclear DNA content of the whitefly Bemisia tabaci (Gennnadius) was estimated using flow cytometry. Male and female nuclei were stained with propidium iodide and their DNA content was estimated using chicken red blood cells and Arabidopsis thaliana L. (Brassicaceae) as external standards. The estimated nuclear DNA content of male and female B. tabaci was 1.04 and 2.06 pg, respectively. These results corroborated previous reports based on chromosome counting, which showed that B. tabaci males are haploid and females are diploid. Conversion between DNA content and genome size (1 pg DNA = 980 Mbp) indicate that the haploid genome size of B. tabaci is 1020 Mbp, which is approximately five times the size of the genome of the fruitfly Drosophila melanogaster Meigen. These results provide an important baseline that will facilitate genomics-based research for the B. tabaci complex.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
B. J. M. Zonneveld

Genome size (C-value) was applied anew to investigate the relationships within the genus Hepatica (Ranunculaceae). More than 50 samples representing all species (except H. falconeri), from wild and cultivated material, were investigated. Species of Hepatica turn out to be diploid (), tetraploid ( ), and a possible pentaploid. The somatic nuclear DNA contents (2C-value), as measured by flow cytometry with propidium iodide, were shown to range from 33 to 80 pg. The Asiatic and American species, often considered subspecies of H. nobilis, could be clearly distinguished from European H. nobilis. DNA content confirmed the close relationships in the Asiatic species, and these are here considered as subspecies of H. asiatica. Parents for the allotetraploid species could be suggested based on their nuclear DNA content. Contrary to the increase in genome size suggested earlier for Hepatica, a significant (6%–14%) loss of nuclear DNA in the natural allopolyploids was found.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Wenqin Wang ◽  
Randall A. Kerstetter ◽  
Todd P. Michael

To extensively estimate the DNA content and to provide a basic reference for duckweed genome sequence research, the nuclear DNA content for 115 different accessions of 23 duckweed species was measured by flow cytometry (FCM) stained with propidium iodide as DNA stain. The 1C-value of DNA content in duckweed family varied nearly thirteen-fold, ranging from 150 megabases (Mbp) in Spirodela polyrhiza to 1,881 Mbp in Wolffia arrhiza. There is a continuous increase of DNA content in Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia that parallels a morphological reduction in size. There is a significant intraspecific variation in the genus Lemna. However, no such variation was found in other studied species with multiple accessions of genera Spirodela, Landoltia, Wolffiella, and Wolffia.


Sign in / Sign up

Export Citation Format

Share Document