scholarly journals Derivation of Nanocellulose from Native Rice Husk

2018 ◽  
Vol 20 (1) ◽  
pp. 19
Author(s):  
Md Iqbal Hossain ◽  
Humayra Zaman ◽  
Taslima Rahman

<p>Nanocellulose has been in numerous applications and can be obtained from bioresources. This work demonstrates the derivation of nanocellulose from an alternative option i.e. rice husk. The processed rice husk was refined by chemical and mechanical treatments. Nanocellulose was subsequently derived from the refined rice husk through acid hydrolysis followed by centrifugation, dialysis and ultrasonic treatment. Scanning Electron Microscopy ensured the nanoscale diameter while Fourier Transformed InfraRed Spectroscopy confirmed the removal of noncellulosic materials. It is therefore proposed that the native rice husk can also be utilized for manufacturing nanocellulose reducing its adverse environmental impacts.</p><p>Chemical Engineering Research Bulletin 20(2018) 19-22</p>

MRS Advances ◽  
2019 ◽  
Vol 4 (61-62) ◽  
pp. 3417-3421
Author(s):  
Ana Teresa Espinosa-Navarro ◽  
María del Carmen Díaz-Nava ◽  
Yolanda Alvarado-Pérez ◽  
Claudia Muro-Urista ◽  
José Juan García Sánchez

ABSTRACTIn the present investigation, biocomposites were synthesized from a polymeric alginate matrix in which the carrot residue and a natural bentonite (ANat / Bio) or an iron-modified clinoptilolite-type zeolite (ZFe / Bio) were supported. Their properties were evaluated adsorbents in contact with aqueous solutions of methylene blue (MB). In the first hour of contact, 46% removal was obtained for the ZFe / Bio biocomposite and 60% for the ANat / Bio biocomposite; reaching 100% removal for the ZFe / Bio biocomposite and 98% for the ANat / Bio biocomposite after 24 hours. The biocomposites were characterized by Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared Spectroscopy (FTIR).


2012 ◽  
Vol 476-478 ◽  
pp. 2059-2062
Author(s):  
Chen Wang ◽  
Ya Dong Li ◽  
Gu Qiao Ding

Tributyl borate was first adopted for the introduction of boron in the preparation of bioactive borosilicate xerogel by sol-gel method. The xerogel reacted continuously in 0.25M K2HPO4 solution with a starting pH value of 7.0 at 37 °C for 1day. The structural, morphologies and compositional changes resulting from the conversion were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that speed of formation of HA was cut way back on the time with the addition of boron and the induction period for the HA nucleation on the surface of the borosilicate xerogel was short than 1 days. The conversion mechanism of the borosilicate xerogels to hydroxyapaptite was also discussed.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Mutia Dewi Yuniati ◽  
Feronika Cinthya Mawarni Putri Wawuru ◽  
Anggoro Tri Mursito ◽  
Iwan Setiawan ◽  
Lediyantje Lintjewas

Magnesite (MgCO3) is the main source for production of magnesium and its compound. In Indonesia, magnesite is quite rare and can be only found in limited amount in Padamarang Island, Southeast Sulawesi Provence. Thus the properties of magnesite and the reactivity degree of the obtained product are of technological importance. The aim of this work was to analyze the characteristics of Padamarang magnesite under calcination and hydrothermal treatment processes. The processes were carried out at various temperatures with range of 150-900°C for 30 minutes. The solids were characterized with respect to their chemical and physical properties by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). SEM image indicates that magnesite was formed from thin and flat hexagon sheets. The FTIR and XRD analysis disclose that MgO formed at temperature above 300°C, where as the magnesite sample also lost its mass around 50%. These results demonstrate that Padamarang magnesite decomposes to magnesium oxide and carbon dioxide at high temperature.Magnesit (MgCO3) merupakan sumber utama untuk produksi magnesium dan senyawa-senyawanya. Di Indonesia, magnesit cukup jarang dan hanya dapat ditemukan dalam jumlah yang terbatas di Pulau Padamarang, Propinsi Sulawesi Tenggara. Oleh karena itu sifat magnesit dan derajat reaktivitas dari produk-produk magnesit penting untuk diketahui. Penelitian ini bertujuan untuk menganalisis karakteristik magnesit Padamarang dengan perlakuan kalsinasi dan hidrothermal.  Proses dilakukan pada temperatur yang bervariasi dari 150-900°C selama 30 menit. Sifat kimia dan fisika dari magnesit dikarakterisasi dengan menggunakan scanning electron microscopy dengan energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dan X-ray diffraction (XRD). Gambar dari analisis SEM menunjukkan bahwa magnesit terbentuk dari lembaran-lembaran heksagonal yang tipis dan datar. Hasil analisis dengan FTIR dan XRD menunjukkan bahwa MgO terbentuk pada temperatur diatas 300°C, dimana sampel magnesit juga kehilangan massanya sekitar 50% pada suhu tersebut. Hal ini menunjukkan bahwa Magnesit Padamarang terdekomposisi menjadi magnesium oksida dan karbon dioksida pada temperatur tinggi.


2013 ◽  
Vol 594-595 ◽  
pp. 613-617
Author(s):  
Santiagoo Ragunathan ◽  
Sung Ting Sam ◽  
Abdul Ghani Azlinda ◽  
Hussin Kamaruddin ◽  
Ismail Hanafi ◽  
...  

Composites of polypropylene/Acylonitrile butadiene rubber/Rice husk powder/ (PP/NBRr/RHP) with and without trans-polyoctylene rubber (TOR) were prepared, and the effects of trans-polyoctylene rubber were investigated. By using rice husk powder of 150300μm, five different compositions of PP/NBRr/RHP composites (i.e.100/0, 80/20, 70/30, 60/40 and 40/60 phr) were prepared in an internal mixer at 180 °C and 50 rpm rotor speed. The results indicate that the incorporation of TOR improved the tensile properties of PP/NBRr/RHPcomposites. Scanning electron microscopy of the fractured surfaces proved that TOR promoted good adhesion between the PP-NBRr matrices and RHP.Keywords: Polypropylene; Trans-polyoctylene rubber; Rice husk powder; Acrylonitrile Butadiene rubber; composite


Sign in / Sign up

Export Citation Format

Share Document