Development of Mucoadhesive Patches for Buccal Administration of Prochlorperazine: Evaluation of In Vitro Release and Mechanical Properties

Author(s):  
Chandra Sekhar Kolli ◽  
Ramesh Gannu ◽  
Vamshi Vishnu Yamsani ◽  
Kishan V ◽  
Madhsudan Rao Yamsani

The aim of this investigation was to develop and evaluate mucoadhesive buccal patches of prochlorperazine (PCPZ). Permeation of PCPZ was calculated in vitro using porcine buccal membrane. Buccal formulations were developed by solvent-casting technique using hydroxy propylmethyl cellulose (HPMC) as mucoadhesive polymer. The patches were evaluated for in vitro release, moisture absorption and mechanical properties. The optimized formulation, based on in vitro release and moisture absorption studies, was subjected for bioadhesion studies using porcine buccal membrane. In vitro flux of PCPZ was calculated to be 2.14 ± 0.01 µg. h–1.cm–2 and buccal absorption was also demonstrated in vivo in human volunteers.             In vitro drug release and moisture absorbed was governed by HPMC content. Increasing concentration of HPMC delayed the drug release. All formulations followed Zero order release kinetics whereas the release pattern was non-Fickian. The mechanical properties, tensile strength (10.28 ± 2.27 kg mm–2 for formulation P3) and elongation at break reveal that the formulations were found to be strong but not brittle. The peak detachment force and work of adhesion for formulation P3 were 0.68 ± 0.15 N and 0.14 ± 0.08 mJ, respectively. The results indicate that suitable bioadhesive buccal patches of PCPZ with desired permeability and suitable mechanical properties could be prepared

1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Author(s):  
O. SREEKANTH REDDY ◽  
M. C. S. SUBHA ◽  
T. JITHENDRA ◽  
C. MADHAVI ◽  
K. CHOWDOJI RAO ◽  
...  

Objective: The aim of the present study was to fabricate and evaluate the drug release studies using Sodium Alginate (SA) and Gelatin (GE) microbeads intercalated with Kaolin (KA) nanoclay for sustained release of D-Penicillamine (D-PA). Methods: Sodium alginate/gelatin/Kaolin blend microbeads were prepared by an extrusion method by using glutaraldehyde (GA) as a crosslinker. The obtained microbeads were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X–ray diffraction (XRD). Drug release kinetics of the microbeads was investigated in simulated intestinal fluid (pH 7.4) at 37 °C. Results: Microbeads formation was confirmed by FTIR spectroscopy. X-RD reveals that the KA should be intercalated with the drug and also it confirms the molecular level dispersion of D-Penicillamine into microbeads. Scanning Electron Microscopy (SEM) studies reveal that the beads were in spherical shape with some wrinkled depressions on the surface. The in vitro release study indicates the D-Penicillamine released in a controlled manner. The in vitro release kinetics was assessed by Korsmeyer-Peppas equation and the ‘n’ value lies in between 0.557-0.693 indicates Non-Fickian diffusion process. Conclusion: The results suggest that the developed KA intercalated microbeads are good potential drug carrier for the controlled release of D-PA.


2018 ◽  
Vol 10 (6) ◽  
pp. 309
Author(s):  
Aya M. Dawaba ◽  
Hamdy M. Dawaba ◽  
Amal S. M. Abu El-enin ◽  
Maha K. A. Khalifa

Objective: The objective of this current study is to fabricate ocuserts to control the drug release from chosen bioadhesive polymeric matrixes to enhance patient compliance. Ciprofloxacin HCl (CFX HCl) was selected as a model drug.Methods: Different bioadhesive polymers with different film forming capabilities namely Hydroxy Propyl Methyl Cellulose (HPMC K4M), Poly Vinyl Alcohol (PVA), Sodium Carboxy Methyl Cellulose (Na CMC), Hydroxy Propyl Cellulose (HPC), Sodium Alginate (Na Alg.), pullulan and Xanthan Gum (XG) in different ratios were used in fabricating ocuserts using solvent-casting technique. Propylene Glycol (PG) was used as a plasticizer to facilitate the fabrication process. Characterization tests of the developed ocuserts were performed as well as bioadhesive tests and in vitro release studies of the incorporated drug. The obtained results were analysed using different release kinetic models. Stability of the selected ocuserts was investigated at 40±0.5 °C and 75±5% Relative Humidity (RH) for three months’ storage period. In vivo ocular irritation test was performed to investigate the safety of the formula in rabbits’ eyes as well as to test the release profile and thus to estimate In vitro In vivo correlation.Results: All the prepared ocuserts showed the uniformity of film characterization and bioadhesion strength ranged from 240±66 and 158±52dyne/cm2. Selected formula from the in vitro release study tested for in vivo study showed the slow release of ciprofloxacin drug up to 24 h with no signs of eye irritancy. Results for In vitro In vivo correlation showed an excellent correlation with R2 value of 0.9982.Conclusion: PVA based ocuserts proven to be a promising once-daily, effective and safe ocular delivery system of the drug.


2019 ◽  
Vol 179 ◽  
pp. 445-452 ◽  
Author(s):  
Akhtar Jahan Siddiqa ◽  
Nilesh Kumar Shrivastava ◽  
M.E. Ali Mohsin ◽  
Mustufa Haider Abidi ◽  
Tauqeer Ahmed Shaikh ◽  
...  

Fig. 12 Scanning electron micrograph of D.L-PLA nanoparticles loaded with CGP 57813. (Ref. 51.) scanning force microscopy (also called atomic force microscopy), enable the visualiza-tion of nanoparticles at atmospheric pressure without gold coating [12,64]. Neverthe-less, the resolution obtained with these new tools is still lower than that with SEM. For size determination, transmission electron microscopy is not as widely used as PCS and SEM, but it is still a powerful method for determining the morphology of particles. With this technique, Fessi et al. [42] estimated the wall thickness of PLA nanocapsules. Krause et al. [18] described the highly porous structure of PLA nano-spheres prepared by the emulsion-evaporation procedure. VIII. IN VITRO RELEASE STUDIES In vitro release studies should in principle be useful for quality control as well as for the prediction of in vivo kinetics. Unfortunately, due to the very small size of the par-ticles, the release rate observed in vivo can differ greatly from the release obtained in a buffer solution. However, in vitro release studies remain very useful for quality control as well as for evaluation of the influence of process parameters on the release rate of active compounds. In vitro drug release from microdispersed systems has been exten-sively reviewed by Washington [65]. Depending on the type of polyester, drug release from nanoparticles can take place through several processes, of which the following appear to be the most important: (1) The drug may diffuse out of the carrier through the solid matrix; to allow complete release from the carriers, (the concentration of drug in the release medium should re-main infinitely low, which condition is known as sink condition); (2) The solvent may penetrate the nanoparticles and dissolve the drug, which then diffuses out into the re-lease medium. Depending on the physico-chemical characteristics of the particles, wa-ter can enter the particles through narrow pores or by hydration. Once the drug is dis-solved, the drug diffuses out of the particles. Here again, since diffusion is driving the

1998 ◽  
pp. 204-216

Author(s):  
Chinmaya Keshari Sahoo ◽  
Amiyakanta Mishra ◽  
Amaresh Prusty ◽  
S. Ram Mohan Rao ◽  
Jimidi Bhaskar

The present study was undertaken to develop floating tablets of lamivudine. The tablets were prepared by direct compression method. The prepared tablets were evaluated for pre compression parameters, post compression parameters, in vitro drug release study and in vitro buoyancy study. Among the prepared formulations F4 batch show 90.98% drug release in 12 h. The in vitro release kinetics were analyzed for different batches by different pharmacokinetic models such as zero order, first order, Higuchi, and Korsmeyer Peppas. The result of optimized formulation releases drug up to 12 h in a controlled manner and follows Higuchi kinetics. Short term stability study at 40±2ºC/75±5% RH for three months on the best formulation was performed showing no significant changes in thickness, hardness, friability, drug content and in vitro drug release.


Author(s):  
Biswajit Basu ◽  
Kevin Garala ◽  
Thimmasetty J

Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. Pimozide patches were prepared using HPMC (15 & 47 cPs), carbopol 934, poly vinyl alcohol, and poly vinyl pyrolidone. FTIR and UV spectroscopic methods revealed that there is no interaction between pimozide and polymers. The patches were evaluated for their thickness uniformity, folding endurance, weight uniformity, content uniformity, swelling behaviour, tensile strength, and surface pH. In vitro release studies of pimozide-loaded patches in phosphate buffer (pH, 6.6) exhibited drug release in the range of 55.32 % to 97.49 % in 60 min. Data of in vitro release from patches were fit in to different equations and kinetic models to explain release kinetics. The models used were zero and first-order equations, Hixon-Crowell, Higuchi and Korsmeyer-Peppas models. In vivo absorption of pimozide from all the patches ranged from 47.96 % to 83.42 % in 60 min in human volunteers. In vivo studies in rabbits showed 85.97% of drug absorption from HPMC-15 cPs patch in 60 min. Good correlation among in vitro release and in vivo absorption of pimozide was observed


Sign in / Sign up

Export Citation Format

Share Document