scholarly journals Formulation and evaluation of fast dissolving tablets of amlodipine besylate by using Fenugreek seed mucilage and Ocimum basilicum gum

2012 ◽  
Vol 1 (9) ◽  
pp. 243-249 ◽  
Author(s):  
Sudheshnababu Sukhavasi ◽  
V. Sai Kishore

Fast dissolving/disintegrating tablets have received ever-increasing demand during the last decade, and the field has became a rapidly growing area in the pharmaceutical area. Particularly the fast dissolving drug delivery systems formulated with natural polymers have more demand because natural materials like gums and mucilages have been extensively used in the field of drug delivery for their easy availability, ease administration, non toxicity, non irritant nature etc. The main aim of the present study was to formulate the fast dissolving tablets of amlodipine besylate tablets using Fenugreek seed mucilage and Ocimum basilicum gum as a natural superdisintegrating agents to achieve quick onset of action, is to increase the water uptake with in shortest wetting time and there by decrease the disintegration time of the tablets by simple and cost effective direct compression technique. Pre-compression parameters like angle of repose and post-compression parameters like wetting time, water absorption ratio, in-vitro disintegration and in-vitro dispersion time were studied. The hardness, friability and drug content of all the formulations were found to be within the limits. The best formulations FFGK5 & FOB5 have shown good disintegration time, hardness and friability. The best formulations were also found to be stable. Optimized formulation was subjected to stability studies as per ICH guidelines and it insignificant change in hardness, disintegration time and in vitro drug release.DOI: http://dx.doi.org/10.3329/icpj.v1i9.11614 International Current Pharmaceutical Journal 2012, 1(9): 243-249 

Author(s):  
Sujan Dawadi ◽  
Bipindra Pandey ◽  
Sabina Nepal ◽  
Yamuna Gurau ◽  
Rashmi Shahi ◽  
...  

Orally disintegrating drug delivery is currently the gold standard in the pharmaceutical industry where it is regarded as the fastest, safest, convenient, and most economic method of drug delivery having the highest patient compliance and preferred over conventional tablets. The goal of this study was to formulate and evaluate oral disintegrating tablets (ODTs) of Metoclopramide hydrochloride to overcome swallowing difficulties. The key to developing successful ODT formulation by direct compression method is to select the right super disintegrant.  Nine formulations were prepared using different super disintegrants such as sodium starch glycolate (SSG), croscarmellose sodium (CCS), and crospovidone (CP) at three concentrations i.e. 2.8 %, 4 %, and 4.8 %. The formulation was evaluate for pre and post-compression parameters like angle of repose, compressibility index, Hausner's ratio, uniformity of content, thickness, hardness, friability, drug content, wetting time, water absorption ratio, dispersion time, in-vitro disintegration time etc. Results revealed that among the 9 formulations, the formulation MHF9 containing 4.8 % of crospovidone was selected as the best formulation as its wetting time 28 second, disintegration and dispersion time 7 second and 18 seconds, percentage drug release after 15 minutes was 102.52 %.


Author(s):  
Mohammed Sarfaraz ◽  
Surendra Kumar Sharma

ABSTRACTObjective: The main objective of this research was to formulate Fast disintegrating tablets of Flurbiprofen incorporating superdisintegrants, isolated from natural sources like Plantago ovata (PO) seeds, Lepidium sativum (LS) seeds and agar-agar.Methods: Superdisintegrants were isolated from their natural sources using reported methods. Swelling index and hydration capacity was determined for the natural superdisintegrants to know their disintegration capacity. The tablet formulations were designed using isolated natural superdisintegrants. The powder blends were evaluated for pre-compressional parameters like angle of repose, bulk density, tapped density, carr’s index, and hausner’s ratio. Fast disintegrating tablets were prepared by direct compression method. The compressed tablets were characterized for post compression parameters.Results: All formulations had hardness, friability, weight variation and drug content within the pharmacopoeial limits. The wetting time was 84 to 254 sec, in vitro disintegration time was between 59.2 to 221 sec, and in-vitro drug release was as low as 11.80% (LS1) to a maximum of 98.99% (PO4) after 4 min of study. Among all, optimized formulation was PO4, as it showed good wetting time (84 sec), fastest disintegration time (59.2 sec), dispersion time (135 sec) and drug release of 98.99.% within 4 min.Conclusion: Flurbiprofen FDT’s were successfully developed using isolated natural disintegrants. The natural disintegrants isolated showed promising results and can prove as effective alternative for synthetic disintegrants.


1970 ◽  
Vol 2 (2) ◽  
pp. 59-65
Author(s):  
Abu Kalam Lutful Kabir ◽  
Shaikh Mukidur Rahman ◽  
Md Arshad Jahan ◽  
Abu Shara Shamsur Rouf

Difficulty in swallowing (dysphagia) is common among all age groups, especially in elderly and pediatrics. Mouth dissolving tablets constitute an innovative dosage forms that overcome the problems of swallowing and provides a quick onset of action. The purpose of this study was to formulate and evaluate mouth dissolving tablet of loratadine using a special preparation technology (pharmaburst Technology) with a super disintegrating agent (Croscarmellose sodium). Tablets were prepared by direct compression technique. The granules were evaluated for angle of repose, bulk density, tapped density, bulkiness, compressibility index and hausners ratio. The tablets were evaluated for hardness, thickness, uniformity of weight, friability, wetting time, water absorption ratio, disintegration time and drug content. In vitro release studies were performed using USP-II (paddle method) in 900ml of pH 1.2 at 50rpm. The physical properties of the prepared tablets did not show any significant variations and were found to have good physical integrity. Tablets prepared with pharmaburst B2 and Croscarmellose sodium showed a lesser disintegration time and wetting time of 27±0.10 and 38±0.13 seconds respectively. The best formulations were subjected to stability studies at 40ºC/75% RH for 60 days. Key words: Loratadine; pharmaburst B2; croscarmellose sodium; mouth dissolving tablets; direct compression.DOI: 10.3329/sjps.v2i2.5825Stamford Journal of Pharmaceutical Sciences Vol.2(2) 2009: 59-65


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Lovleen Kaur ◽  
Rajni Bala ◽  
Neha Kanojia ◽  
Manju Nagpal ◽  
Gitika Arora Dhingra

The current research work involves preparation of fast dissolving tablets of Aceclofenac by direct compression method using different concentrations of Lepidium sativum mucilage as natural superdisintegrant. A two-factor three-level (32) factorial design is being used to optimize the formulation. Nine formulation batches (D1–D9) were prepared accordingly. Two factors as independent variables (X1-amount of β-cyclodextrin and X2-amount of Lepidium sativum mucilage) were taken with three levels (+1,0,-1). The levels of two factors were selected on the basis of preliminary experiments conducted and their effect on three dependent variables (disintegration time, wetting time, and in vitro drug release) was studied along with their % prediction error. All the active blends were evaluated for postcompression parameters (angle of repose, Carr’s index, Hausner ratio, etc.) and the tablets were evaluated for postcompression parameters (weight variation, hardness, and friability, wetting time, disintegration time, water absorption ratio, and in vitro drug release studies). The optimum batch was further used for SEM and stability studies. Formulation D5 was selected by the Design-Expert software which exhibited DT (15.5 sec), WT (18.94 sec), and in vitro drug release (100%) within 15 minutes.


Author(s):  
Suresh Kulkarni ◽  
Ranjit P. ◽  
Nikunj Patel ◽  
Someshwara B. ◽  
Ramesh B. ◽  
...  

The present investigation deals with the formulation of fast disintegrating tablets of Meloxicam that disintegrate in the oral cavity upon contact with saliva and there by improve therapeutic efficacy. Meloxicam is a newer selective COX-1 inhibitor. The tablets were prepared by wet granulation procedure. The influence of superdisintegrants, crosspovidone, croscaremellose sodium on disintegration time, wetting time and water absorption ratio were studied. Tablets were evaluated for weight and thickness variation, disintegration time, drug content, in vitro dissolution, wetting time and water absorption ratio. The in vitro disintegration time of the best fast disintegrating tablets was found to be 18 sec. Tablets containing crospovidone exhibit quick disintegration time than tablets containing croscaremellose sodium. The fast disintegrating tablets of Meloxicam with shorter disintegration time, acceptable taste and sufficient hardness could be prepared using crospovidone and other excipients at optimum concentration.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
MERVAT SHAFIK IBRAHIM ◽  
NIHAL MOHAMED ELMAHDY ELSAYYAD ◽  
ABEER SALAMA ◽  
SHEREEN H. NOSHI

Objective: This study aims to prepare and optimize indomethacin freeze-dried sublingual tablets (IND-FDST) by utilizing a quality by design (QbD) approach to achieve rapid drug dissolution and simultaneously bypassing the GIT for better patient tolerability. Methods: A screening study was utilized to determine the most significant factors which the quality attributes, namely disintegration time and % friability. Then an optimization study was conducted using a full response surface design to determine the optimized formula by varying the amount of the matrix-forming polymer (gelatin) and super disintegrant (croscarmellose sodium (CCS)). The variables' effect on the % friability, disintegration time, wetting time, and amount of drug release after 10 min (%Q10) was studied. The optimized formula was tested for compatibility, morphology as well as stability studies under accelerated conditions in addition to the in vivo pharmacodynamics in rats. QbD was adopted by utilizing a screening study to identify the significant formulation factors followed by a response surface optimization study to determine the optimized IND-FDST formulation. Results: Optimized IND-FDST comprised of gelatin/CCS combination in a ratio of 1:1 possessed adequate %friability (0.73±0.03%), disintegration time (25.40±1.21 seconds), wetting time (3.49±0.68 seconds), and % Q10 (100.99±5.29%) as well as good stability under accelerated conditions. IND-FDST also showed significant inhibition of edema, tumour necrosis factor-alpha, and interleukin-6 release in vivo compared to the oral market product by 70%, 42%, and 65%, respectively. Conclusion: QbD presents a successful approach in the optimization of a successful IND-FDST formula that showed superior in vivo and in vitro characteristics.


Author(s):  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA ◽  
B. KUSUMA LATHA

Objective: To synthesize, characterize and evaluate starch valerate as a superdisintegrant in the formulation of aceclofenac fast dissolving tablets by employing 23 factorial design. Methods: Starch valerate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of aceclofenac was prepared by employing starch valerate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch valerate prepared was found to be fine, amorphous and free flowing. Starch valerate exhibited good swelling in water with swelling index (125.2%). The study of starch valerate was shown by fourier transform infrared spectra (FTIR). The drug content (200±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) has been effective with regard to all the formulated fast dissolving tablets employing starch valerate. The disintegration time of all the formulated tablets was found to be in the range of 14±0.04 to 25.7±0.02 sec. The optimized formulation F4 had the least disintegration time i.e., 12.8±0.02 sec. The wetting time of the tablets was found to be in the range of 76±0.21 to 217±0.17s. The In vitro wetting time was less (i.e., 28±0.02s) in optimized formulation F4. The water absorption ratio of the formulated tablets was found to be in the range of 46±0.12 to 100±0.27%. The percent drug dissolved in the optimized formulation F8 was found to be 99.93% in 5 min. Conclusion: Starch valerate, when combined with sodium starch glycolate, croscarmellose sodium, with aceclofenac, was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 5 min.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Sign in / Sign up

Export Citation Format

Share Document