scholarly journals Study of Tantalum Substituted Potassium Tungsten Bronzes

2012 ◽  
Vol 25 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Md Mahbubur R Shakil ◽  
Tapas Debnath ◽  
Claus H Ruscher ◽  
Altaf Hussain

A series of compounds KxTayW1-yO3 with x = 0.30, 0.00 ? y ? 0.30 and x = 0.55, 0.00 ? y ? 0.10 were synthesized by conventional solid-state method. The samples were characterized using XRD and FTIR spectroscopy. X-ray powder patterns reveal that the samples with compositions x = 0.30, y ? 0.30 show hexagonal tungsten bronze (HTB) type phase and the samples with x = 0.55, 0.02 ? y ? 0.10 show a mixture of two phases (K-HTB and tetragonal potassium tungsten bronze, K-TTB). The samples of the system, K0.30TayW1-yO3 with 0.00 ? y ? 0.15 shows no significant change in the cell parameters. However, for the composition y > 0.15, the cell parameter a decreases and c increases with increasing Ta content, which may be  explained by the ordering of Ta for y > 0.15 suggesting the transformation to another  space group. The appearance of absorption peak in the infrared absorption spectra of K0.3TayW1-yO3, y > 0.10 samples indicate the transition to non-metallic phase. DOI: http://dx.doi.org/10.3329/jbcs.v25i1.11770 Journal of Bangladesh Chemical Society, Vol. 25(1), 38-45, 2012

2010 ◽  
Vol 25 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Hanèn Chaker ◽  
Thierry Roisnel ◽  
Monica Ceretti ◽  
R. Ben Hassen

Compound from the solid-solution NdSrNi1−xCrxO4−δ, 0≤x≤1, has been prepared using conventional solid-state method and was characterized by X-ray powder diffraction. The NdSrNi0.5Cr0.5O4−δ sample shows the adoption of the K2NiF4-type structure based on the tolerance factor calculation. X-ray diffraction analysis using the Rietveld method was carried out and it was found that NdSrNi0.5Cr0.5O4−δ compound crystallizes in tetragonal symmetry with space group I4/mmm. The lattice parameters are found to be at room temperature, a=3.8012(3) Å and c=12.4812(1) Å. For X-ray diffraction data, the reliability factors are RB=0.034, Rwp=0.089, , and χ2=1.17. Bond-valence sum calculations were performed for nickel and chromium. The changes in unit-cell parameters are discussed in terms of oxygen stoichiometry and transition metal (3d) oxidation state from the perspective of the Brown bond-valence sum calculation theory.


1987 ◽  
Vol 2 (4) ◽  
pp. 225-226
Author(s):  
Peter Bayliss ◽  
Slade St. J. Warne

AbstractMagnesium-chlorophoenicite may be differentiated from the Mn-analogue chlorophoenicite, because for magnesium-chlorophoenicite at 7Å, whereas for chlorophoenicite.In a review of the literature for the Mineral Powder Diffraction File by Bayliss et al. (1980), powder X-ray diffraction data could not be found of the mineral species magnesium-chlorophoenicite, (Mg,Mn)3Zn2(AsO4)(OH,O)6. Dunn (1981) states that the powder X-ray diffraction data of magnesium-chlorophoenicite is essentially identical to that of chlorophoenicite (Mn analogue) and confirms that the minerals are isostructural.With the crystal structure parameters determined by Moore (1968) for a Harvard University specimen from New Jersey of chlorophoenicite, a powder X-ray diffraction pattern was calculated with the programme of Langhof, Physikalische Chemie Institute, Darmstadt. The calculated pattern was used to correct and complete the indexing of the powder X-ray diffraction data of chlorophoenicite specimen ROM M15667 from Franklin, Sussex County, New Jersey, U.S.A. by the Royal Ontario Museum (PDF 25-1159). With the correctly indexed data of ROM M15667, the unitcell parameters were refined by least-squares analysis and are listed in Table 1.The most magnesium-rich magnesium-chlorophoenicite found in the literature is a description of Harvard University specimen 92803 from Franklin, Sussex County, New Jersey, U.S.A. by Dunn (1981), where Mg is slightly greater than Mn. A 114.6 mm Debye-Schemer film taken of HU92803 with Cu radiation and a Ni filter (CuKα = 1.5418Å) was obtained from Dr. P. Dunn and measured visually. The unit-cell parameters, which were refined by least-squares analysis starting from the unit-cell parameters of PDF 25-1159 in space group C2/m(#12), are listed in Table 1, and give F28 = 4.1(0.050,136) by the method of Smith & Snyder (1979).The hkl, dcalulated, dobserved and relative intensities (I/I1) of HU92803 are presented in Table 2. With the atomic positions and temperature factors of chlorophoenicite determined by Moore (1968), the Mn atomic positions occupied by 50% Mg and 50% Mn, and the unit-cell parameters of HU92803, a powder X-ray diffraction pattern was calculated and Icalculated is recorded in Table 2. A third powder X-ray diffraction pattern was calculated with the Mn atomic positions fully occupied by Mg. Because the atomic scattering factor of Mn is more than twice greater than Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the calculated intensities of the first three reflections given in Table 3.Although the a, c and β unit-cell parameters of chlorphoenicite are similar to those of magnesium-chlorphoenicite, the b unit-cell parameter of chlorophoenicite is significantly greater than that of magnesium-chlorophoenicite (Table 1). The b unit-cell parameter represents the 0–0 distance of the Mn octahedra (Moore, 1968). Since the size of Mn is greater than that of Mg, chlorophoenicite may be differentiated from magnesium-chlorophoenicite based upon the b unit-cell parameter given in Table 1.American Museum of Natural History (New York, N.Y., U.S.A.) specimen 28942 from Sterling Hill, Ogdensburg, New Jersey is composed of willemite, haidingerite and magnesian chlorophoenicite. A spectrographic analysis of the magnesian chlorophoenicite shows As, Mg, Mn and Zn. Powder X-ray diffraction data (PDF 34-190) of the magnesian chlorophoenicite was collected by diffractometer with Cu radiation and a graphite 0002 monochromator (Kα1 = 1.5405) at a scanning speed of 0.125° 2θ per minute. The unit-cell parameters, which were refined by leastsquares analysis starting from the unit-cell parameters of PDF 25-1159, are given in Table 1. Specimen AM 28942 is called chlorophoenicite, because of its large b unit-cell parameter (Table 1), and the I/I1 of 25 for reflection 001 and of 50 for reflection 201 compared to the Icalculated in Table 3.


2009 ◽  
Vol 65 (6) ◽  
pp. 770-781 ◽  
Author(s):  
Tatiana N. Drebushchak ◽  
Yury A. Chesalov ◽  
Elena V. Boldyreva

Structural changes in the high-temperature ∊-polymorph of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, C10H13ClN2O3S, on cooling down to 100 K and on reverse heating were followed by single-crystal X-ray diffraction. At temperatures below 200 K the phase transition into a new polymorph (termed the ∊′-form) has been observed for the first time. The polymorphic transition preserves the space group Pna21, is reversible and is accompanied by discontinuous changes in the cell volume and parameters, resulting from changes in molecular conformation. As shown by IR spectroscopy and X-ray powder diffraction, the phase transition in a powder sample is inhomogeneous throughout the bulk, and the two phases co-exist in a wide temperature range. The cell parameters and the molecular conformation in the new polymorph are close to those in the previously known α-polymorph, but the packing of the z-shaped molecular ribbons linked by hydrogen bonds inherits that of the ∊-form and is different from the packing in the α-polymorph. A structural study of the α-polymorph in the same temperature range has revealed no phase transitions.


2014 ◽  
Vol 976 ◽  
pp. 30-35
Author(s):  
Francisco Raúl Barrientos-Hernández ◽  
Alberto Arenas-Flores ◽  
Iván Alonso Lira Hernández ◽  
Carlos Gómez-Yáñez ◽  
Miguel Pérez Labra

Several compositions of BaTiO:Nb5+ were made by conventional solid-state method in air atmosphere, according to the general formula BaTi1-xNbxO3; (x= 0.005, 0.04, 0.08, 0.20, and 0.25). The crystal structure, microstructure, dielectric and ferroelectric properties of samples were investigated by XRD, Raman Spectroscopy, Electrical Measurements and SEM. X-ray diffraction results clearly indicated that when x ≥ 0.25 was prepared; the hexagonal phase Ba8Ti3Nb4O24 appeared. Electrical measurements at 1 kHz were carried out and several pellets were made, the relative permittivity was calculated. The dielectric constant of the pristine BaTiO3 is about 7000, and the Curie temperature is ≈120°C at room temperature, decreasing to 90°C with Nb5+ addition (x = 0.005).


2010 ◽  
Vol 25 (4) ◽  
pp. 349-354 ◽  
Author(s):  
Y. Q. Chen ◽  
J. K. Liang ◽  
J. Luo ◽  
J. B. Li ◽  
G. H. Rao

The structure transitions and phase relationships of DyFe3−xAlx compounds have been investigated by X-ray powder diffraction. Our XRD results show that each of the compounds with x≤0.45 crystallizes in the rhombohedral PuNi3-type structure with space group R3¯m and Z=9; for the 0.8≤x<1.0 compounds, each has a hexagonal structure of the CeNi3 type with space group P63/mmc and Z=6; and each of the samples with 0.45<x<0.8 is a two-phase mixture of the PuNi3- and CeNi3-type structures. The calculated XRD intensities of the DyFe3−xAlx compounds with x=0.2, 0.33, 0.4, and 0.45 indicate that Dy occupies the 3a and 6c sites, Fe and Al distribute randomly on the 18h site, and the 3b and 6c sites are exclusively occupied by Fe, which agrees well with those of our experimental XRD patterns. The XRD intensities of the DyFe3−xAlx compounds with x=0.8 and 1.0 have also been calculated and found to agree with the experimental results with Dy on the 2c and 4f sites, Fe and Al at the 12k site, and Fe at the 2a, 2b, and 2d sites. In the two-phase region with x=0.45–0.8, the values of unit-cell parameters and phase compositions are linearly dependent on the value of x, indicating that the two phases are constituted by the same composition x with different stacking arrangements. This abnormal two-phase equilibrium is further confirmed by the structural analysis of the DyFe2.33Al0.67 (or x=0.67) sample. The samples with x=1.1 and 1.2 were also analyzed, and each found to be a mixture of more than two phases.


1996 ◽  
Vol 11 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Nicole M. L. N. P. Closset ◽  
René H. E. van Doorn ◽  
Henk Kruidhof ◽  
Jaap Boeijsma

The crystal structure of La1−xSrxCoO3−δ (0≤x≤0.6) has been studied, using powder X-Ray diffraction. The crystal structure shows a transition from rhombohedral distorted perovskite for LaCoO3−δ into cubic perovskite for La0.4Sr0.6CoO3−δ. The cubic unit cell parameter is ac=3.8342(1) Å for La0.4Sr0.6CoO3−δ, the space group probably being Pm3m. Using a hexagonal setting, the cell parameters for La0.5Sr0.5CoO3−δ, are a=5.4300(3) Å, c=13.2516(10) Å; a=5.4375(1) Å, c=13.2313(4) Å for La0.6Sr0.4CoO3−δ; a=5.4437(1) Å, c=13.2085(5) Å for La0.7Sr0.3CoO3−δ; a=5.4497(2) Å, c=13.1781(6) Å for La0.8Sr0.2CoO3−δ and a=5.4445(2) Å, c=13.0936(6) Å for LaCoO3−δ with the space group probably being R3c.


2020 ◽  
Author(s):  
Mohsen Elain Hajlaoui ◽  
Dhahri Essebti ◽  
Khirouni Kamel

Abstract Ni0.4Zn0.6Fe2O4 ferrites were prepared by the conventional solid-state method. The X-ray study allowed the identification of a single orthorhombic phase. The conductivity of the prepared sample was measured at different frequencies in the temperature range 340 K to 600 K. The obtained results are discussed in terms of charge carriers hopping. We showed that the dielectric permittivity is high at different temperatures and various frequencies. The impedance plane findings present semicircle arcs at various temperatures and an electrical equivalent circuit was determined. In addition, the obtained two relaxation times were established as a function of temperature.


2014 ◽  
Vol 804 ◽  
pp. 63-66
Author(s):  
Pei Wu ◽  
Xue Gang Luo ◽  
Xiao Yan Lin ◽  
Ke Li

In this study, room-temperature driven thermocatalyst (Fe/Sr2Bi2O5 powder) with negative temperature coefficient resistor (NTC) characteristics was prepared by conventional solid state method at various temperatures. Fe/Sr2Bi2O5 powder was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy EDS. The results indicate that Fe/Sr2Bi2O5 powder was prepared and the Fe has been doped successfully in Sr2Bi2O5. The thermocatalyst powder obtained a particular and stable crystal style, meanwhile, besides, well distributed size and rough surface were also found in regard to the thermocatalyst above. On the other hand, the thermocatalyst reactions show that Fe/Sr2Bi2O5 powder has highest removal rate of degradation under the 0.75% (molar percent) content of Fe at 750 oC. The total removal rate of degradation arrives at 93.8% after 3h at 50 oC. Hence, Fe/Sr2Bi2O5 powder may be a potential thermocatalyst at room-temperature for wastewater treatment in the future.


1988 ◽  
Vol 3 (4) ◽  
pp. 222-233 ◽  
Author(s):  
Lauren A. Zellmer ◽  
Deane K. Smith ◽  
Diane Nelson ◽  
Barry E. Scheetz

AbstractSynthesis and unit cell parameter refinement of 25 ferroelectric compounds with the tungsten bronze structure are reported. A general chemical formula for these compounds is (A1, A2, C) B10 O30, where specifically A1 and A2 = K, Na, Ba, Sr, Pb, La, Eu, Sm, Y, Bi; C = Li; and B = Nb, Ta, Ti, W. All compounds were prepared by solid state sintering at temperatures ranging from 1100°C to 1380°C. Refined cell parameters (tetragonal with space group P4bm[100]), I/Icor values, calculated densities and Z values are included for the 25 compounds.


2009 ◽  
Vol 416 ◽  
pp. 553-557 ◽  
Author(s):  
Zeng Dian Zhao ◽  
Yu Hong Huang ◽  
Yu Gang Zhao ◽  
Xian Jin Yu

The silicon-coated iron powder was evenly mixed with corundum powder and high temperature binder. After tabletting and sintering, followed by crushing and screening, the magnetic abrasive with a certain size was obtained. Scanning electron microscope (SEM), Energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) were respectively used to characterize the morphology, elemental composition and the crystalloid structures of magnetic abrasive. The ferromagnetic phase and abrasive phase were combined firmly. The magnetic abrasive prepared showed a good grinding ability, whose durable time was up to 24 min. Irregular particles was obtained by smashing the magnetic abrasive, mainly composed of Al2O3, Fe2O3, α-Fe, AlFeO3, (Al, Fe)7BO3(SiO4)3O3.


Sign in / Sign up

Export Citation Format

Share Document