scholarly journals Environmental Monitoring at and around the Matuail Landfill Site of Dhaka City using Remote Sensing

2022 ◽  
Vol 12 (3) ◽  
pp. 127-138
Author(s):  
Md Sayeduzzaman Sarker ◽  
Umma Rafia Shoily ◽  
Nokibul Alam Chowdhury ◽  
Rafsun Ahmad ◽  
Afzal Ahmed

Rapid urban population growth and flourishing incomes have increased waste production in Dhaka city. A part of daily produced Municipal Solid Waste (MSW) is disposed of at Matuail sanitary landfill located within Jatrabari Thana, Dhaka. This study has analyzed the environmental impacts at and around this landfill using remote sensing techniques. The objective of this research is to develop a means of environmental monitoring at the landfill site and its surroundings through the implementation of various time-series remote sensing indices e.g., Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Modified Soil Adjusted Vegetation Index (MSAVI). LST is used to observe the Spatio-temporal pattern of temperature distribution. NDVI, SAVI, and MSAVI are the Bio-indicators and they are helpful to analyze the vegetation health condition at and around the landfill area. From the result of LST, it is observed that the average temperature of the Jatrabarithana has increased from 23.12℃ in 1993 to an optimum temperature of 35.20℃ in 2013, then it went down to 29.09℃ in 2018. The NDVI result for the study period shows that the percentages of ‘Bare Soil’ and ‘Structural Object’ have increased drastically from 10% to 41.20% and 13.30% to 31.52% respectively for these 25 years in Jatrabarithana. On the other hand, the percentages of ‘Shrub and Grassland’ and ‘Moderate Vegetation’ have decreased from 54.20% to 25.15% and 12.55% to 0% respectively. SAVI and MSAVI also show evidence of increasing the amount of bare soil and structural object and decreasing the amount of vegetation. Due to the waste stabilization process, and inappropriate management system at the Matuail landfill, along with urbanization, industrial activity, and deforestation, a harmful effect has been done to the surrounding environment. As an outcome, the temperature has risen rapidly and the amount of vegetation has declined to a significant extent. Journal of Engineering Science 12(3), 2021, 127-138

2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


2019 ◽  
Vol 11 (21) ◽  
pp. 2534 ◽  
Author(s):  
Willibroad Gabila Buma ◽  
Sang-Il Lee

As the world population keeps increasing and cultivating more land, the extraction of vegetation conditions using remote sensing is important for monitoring land changes in areas with limited ground observations. Water supply in wetlands directly affects plant growth and biodiversity, which makes monitoring drought an important aspect in such areas. Vegetation Temperature Condition Index (VTCI) which depends on thermal stress and vegetation state, is widely used as an indicator for drought monitoring using satellite data. In this study, using clear-sky Landsat multispectral images, VTCI was derived from Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI). Derived VTCI was used to observe the drought patterns of the wetlands in Lake Chad between 1999 and 2018. The proportion of vegetation from WorldView-3 images was later introduced to evaluate the methods used. With an overall accuracy exceeding 90% and a kappa coefficient greater than 0.8, these methods accurately acquired vegetation training samples and adaptive thresholds, allowing for accurate estimations of the spatially distributed VTCI. The results obtained present a coherent spatial distribution of VTCI values estimated using LST and NDVI. Most areas during the study period experienced mild drought conditions, though severe cases were often seen around the northern part of the lake. With limited in-situ data in this area, this study presents how VTCI estimations can be developed for drought monitoring using satellite observations. This further shows the usefulness of remote sensing to improve the information about areas that are difficult to access or with poor availability of conventional meteorological data.


Author(s):  
Pandji W. Dhewantara ◽  
Wenbiao Hu ◽  
Wenyi Zhang ◽  
Wenwu Yin ◽  
Fan Ding ◽  
...  

ObjectiveTo quantify the effects of climate variability, selected remotely-sensed environmental factors on human leptospirosis in the high-risk counties in China.IntroductionLeptospirosis is a zoonotic disease caused by the pathogenic Leptospira bacteria and is ubiquitously distributed in tropical and subtropical regions. Leptospirosis transmission driven by complex factors include climatic, environmental and local social conditions 1. Each year, there are about 1 million cases of human leptospirosis reported globally and it causes approximately 60,000 people lost their lives due to infection 2. Yunnan Province and Sichuan Province are two of highly endemic areas in the southwest China that had contributed for 47% of the total national reported cases during 2005-2015 3. Factors underlying local leptospirosis transmission in these two areas is far from clear and thus hinder the efficacy of control strategies. Hence, it is essential to assess and identify local key drivers associated with persistent leptospirosis transmission in that areas to lay foundation for the development of early-warning systems. Currently, remote sensing technology provides broad range of physical environment data at various spatial and temporal scales 4, which can be used to understand the leptospirosis epidemiology. Utilizing satellite-based environmental data combined with locally-acquired weather data may potentially enhance existing surveillance programs in China so that the burden of leptospirosis could be reduced.MethodsThis study was carried out in two counties situated in different climatic zone in the southwestern China, Mengla and Yilong County (Fig 1). Total of 543 confirmed leptospirosis cases reported during 2006-2016 from both counties were used in this analysis. Time series decomposition was used to explore the long-term seasonality of leptospirosis incidence in two counties during the period studied. Monthly remotely-sensed environmental data such as normalized difference vegetation index (NDVI), modified normalized water difference index (MNDWI) and land surface temperature (LST) were collected from satellite databases. Climate data include monthly precipitation and relative humidity (RH) data were obtained from local weather stations. Lagged effects of rainfall, humidity, normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI) and land surface temperature (LST) on leptospirosis was examined. Generalized linear model with negative binomial link was used to assess the relationships of climatic and physical environment factors with leptospirosis. Best-fitted model was determined based on the lowest information criterion and deviance.ResultsLeptospirosis incidence in both counties showed strong and unique annual seasonality. Bi-modal temporal pattern was exhibited in Mengla County while single epidemic curve was persistently demonstrated in Yilong County (Fig 2). Total of 10 and 20 models were generated for Mengla and Yilong County, respectively. After adjusting for seasonality, final best-fitted models indicated that rainfall at lag of 6-month (incidence rate ratio (IRR)= 0.989; 95% confidence interval (CI) 0.985-0.993, p<0.001) and current LST (IRR=0.857, 95%CI:0.729-0.929, p<0.001) significantly associated with leptospirosis in Mengla County (Table 1). While in Yilong, rainfall at 1-month lag, MNDWI (5-months lag) and LST (3-months lag) were associated with an increased incidence of leptospirosis with a risk ratio of 1.013 (95%CI: 1.003-1.023), 7.960 (95%CI: 1.241-47.66) and 1.193 (95%CI:1.095-1.301), respectively.ConclusionsOur study identified lagged effect and relationships of weather and remotely-sensed environmental factors with leptospirosis in two endemic counties in China. Rainfall in combination with satellite derived physical environment factors such as flood/water indicator (MNDWI) and temperature (LST) could help explain the local epidemiology as well as good predictors for leptospirosis outbreak in both counties. This would also be an avenue for the development of leptospirosis early warning system in to support leptospirosis control in China.References1. Haake, D. A. , Levett, P. N. Leptospirosis in humans. Current Topics in Microbiology and Immunology 2015, 387, 65-97.2. Costa, F. et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLOS Neglected Tropical Diseases 2015, 9, e0003898.3. Dhewantara, P. W. et al. Epidemiological shift and geographical heterogeneity in the burden of leptospirosis in China. Infectious Diseases of Poverty 2018, 7, 57.4. Herbreteau, V., Salem, G., Souris, M., Hugot, J. P. & Gonzalez, J. P. Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration. Health & Place 2007, 13, 400-403. 


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Xincheng Zheng ◽  
Zeyao Zou ◽  
Chongmin Xu ◽  
Sen Lin ◽  
Zhilong Wu ◽  
...  

Although many prior efforts found that road networks significantly affect landscape fragmentation, the spatially heterogeneous effects of road networks on urban ecoenvironments remain poorly understood. A new remote-sensing-based ecological index (RSEI) is proposed to calculate the ecoenvironmental quality, and a local model (geographically weighted regression, GWR) was applied to explore the spatial variations in the relationship between kernel density of roads (KDR) and ecoenvironmental quality and understand the coupling mechanism of road networks and ecoenvironments. The average effect of KDR on the variables of normalized difference vegetation index (NDVI), land surface moisture (LSM), and RSEI was negative, while it was positively associated with the soil index (SI), normalized differential build-up and bare soil index (NDBSI), index-based built-up index (IBI), and land surface temperature (LST). This study shows that rivers and the landscape pattern along rivers exacerbate the impact of road networks on urban ecoenvironments. Moreover, spatial variation in the relationship between road network and ecoenvironment is mainly controlled by the relationship of the road network with vegetation and bare soil. This research can help in better understanding the diversified relationships between road networks and ecoenvironments and offers guidance for urban planners to avoid or mitigate the negative impacts of roads on urban ecoenvironments.


2021 ◽  
Author(s):  
Stenka Vulova ◽  
Fred Meier ◽  
Alby Duarte Rocha ◽  
Justus Quanz ◽  
Hamideh Nouri ◽  
...  

&lt;p&gt;An increasing number of urban residents are affected by the urban heat island effect and water scarcity as urbanization and climate change progress. Evapotranspiration (ET) is a key component of urban greening measures aimed at addressing these issues, yet methods to estimate urban ET have thus far been limited. In this study, we present a novel approach to model urban ET at a half-hourly scale by fusing flux footprint modeling, remote sensing (RS) and geographic information system (GIS) data, and artificial intelligence (AI). We investigated this approach with a two-year dataset (2018-2020) from two eddy flux towers in Berlin, Germany. Two AI algorithms (1D convolutional neural networks and random forest) were compared. The land surface characteristics contributing to ET measurements were estimated by combining footprint modeling with RS and GIS data, which included Normalized Difference Vegetation Index (NDVI) derived from the Harmonized Landsat and Sentinel-2 (HLS) NASA product and indicators of 3D urban structure (e.g. building height). The contribution of remote sensing and meteorological data to model performance was examined by testing four predictor scenarios: (1) only reference evapotranspiration (ETo), (2) ETo and RS/ GIS data, (3) meteorological data, and (4) meteorological and RS/ GIS data. The inclusion of GIS and RS data extracted using flux footprints improved the predictive accuracy of models. The best-performing models were then used to model ET values for the year 2019 and compute monthly and annual sums of ET. A variable importance analysis highlighted the importance of the NDVI and impervious surface fraction in modeling urban ET. The 2019 ET sum was considerably higher at the site surrounded by more urban vegetation (366 mm) than at the inner-city site (223 mm). The proposed method is highly promising for modeling ET in a heterogeneous urban environment and can bolster sustainable urban planning efforts.&lt;/p&gt;


2020 ◽  
Vol 12 (21) ◽  
pp. 3558
Author(s):  
Lifeng Xie ◽  
Weicheng Wu ◽  
Xiaolan Huang ◽  
Penghui Ou ◽  
Ziyu Lin ◽  
...  

Rare earth elements (REEs) are widely used in various industries. The open-pit mining and chemical extraction of REEs in the weathered crust in southern Jiangxi, China, since the 1970s have provoked severe damages to the environment. After 2010, different restorations have been implemented by various enterprises, which seem to have a spatial variability in both management techniques and efficiency from one mine to another. A number of vegetation indices, e.g., normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index (EVI) and atmospherically resistant vegetation index (ARVI), can be used for this kind of monitoring and assessment but lack sensitivity to subtle differences. For this reason, the main objective of this study was to explore the possibility to develop new, mining-tailored remote sensing indicators to monitor the impacts of REE mining on the environment and to assess the effectiveness of its related restoration using multitemporal Landsat data from 1988 to 2019. The new indicators, termed mining and restoration assessment indicators (MRAIs), were developed based on the strong contrast of spectral reflectance, albedo, land surface temperature (LST) and tasseled cap brightness (TCB) of REE mines between mining and postmining restoration management. These indicators were tested against vegetation indices such as NDVI, EVI, SAVI and generalized difference vegetation index (GDVI), and found to be more sensitive. Of similar sensitivity to each other, one of the new indicators was employed to conduct the restoration assessment of the mined areas. Six typically managed mines with different restoration degrees and management approaches were selected as hotspots for a comparative analysis to highlight their temporal trajectories using the selected MRAI. The results show that REE mining had experienced a rapid expansion in 1988–2010 with a total mined area of about 66.29 km2 in the observed counties. With implementation of the post-2010 restoration measures, an improvement of varying degrees in vegetation cover in most mines was distinguished and quantified. Hence, this study with the newly developed indicators provides a relevant approach for assessing the sustainable exploitation and management of REE resources in the study area.


Author(s):  
Mfoniso Asuquo Enoh ◽  
Uzoma Chinenye Okeke ◽  
Needam Yiinu Barinua

Remote Sensing is an excellent tool in monitoring, mapping and interpreting areas, associated with hydrocarbon micro-seepage. An important technique in remote sensing known as the Soil Adjusted Vegetation Index (SAVI), adopted in many studies is often used to minimize the effect of brightness reflectance in the Normalized Difference Vegetation Index (NDVI), related with soil in areas of spare vegetation cover, and mostly in areas of arid and semi–arid regions. The study aim at analyzing the effect of hydrocarbon micro – seepage on soil and sediments in Ugwueme, Southern Eastern Nigeria, with SAVI image classification method. To achieve this aim, three cloud free Landsat images, of Landsat 7 TM 1996 and ETM+ 2006 and Landsat 8 OLI 2016 were utilized to produce different SAVI image classification maps for the study.  The SAVI image classification analysis for the study showed three classes viz Low class cover, Moderate class cover and high class cover.  The category of high SAVI density classification was observed to increase progressive from 31.95% in 1996 to 34.92% in 2006 and then to 36.77% in 2016. Moderately SAVI density classification reduced from 40.53% in 1996 to 38.77% in 2006 and then to 36.96% in 2016 while Low SAVI density classification decrease progressive from 27.51% in 1996 to 26.31% in 2006 and then increased to 28.26% in 2016. The SAVI model is categorized into three classes viz increase, decrease and unchanged. The un – changed category increased from 12.32km2 (15.06%) in 1996 to 17.17 km2 (20.96%) in 2006 and then decelerate to 13.50 km2 (16.51%) in 2016.  The decrease category changed from 39.89km2 (48.78%) in 1996 to 40.45 km2 (49.45%) in 2006 and to 51.52 km2 (63.0%) in 2016 while the increase category changed from 29.57km2 (36.16%) in 1996 to 24.18 km2 (29.58%) in 2006 and to 16.75 km2 (20.49%) in 2016. Image differencing, cross tabulation and overlay operations were some of the techniques performed in the study, to ascertain the effect of hydrocarbon micro - seepage.  The Markov chain analysis was adopted to model and predict the effect of the hydrocarbon micro - seepage for the study for 2030.  The study expound that the SAVI is an effective technique in remote sensing to identify, map and model the effect of hydrocarbon micro - seepage on soil and sediment particularly in areas characterized with low vegetation cover and bare soil cover.


Author(s):  
Anjar Pranggawan Azhari ◽  
Sukir Maryanto ◽  
Arief Rachmansyah

This paper presented used remote sensing method for identification geological structure on Blawan-Ijengeothermal field and its system. Remote sensing data, specifically Landsat 8 and DEM SRTM, provide lineaments from the 753 multispectral band and the land surface temperature (LST) from single thermal infra red band using a retrieval method. Surface emissivity was determined based on Normalized Difference Vegetation Index (NDVI) of study area. Remote sensing analysis is good approach to identification of geological structure from surface that control thermal manifestation in Blawan geothermal field. It shows Blawan fault is the main structure in geothermal field which associated with high LST and hot springs. Interpretation indicated reservoir of Blawan-Ijen geothermal system spread from Plalangan to southwest area. Abstrak Penelitian ini bertujuan untuk mengidentifikasi struktur geologi dan gambaran sistem panasbumi Blawan-Ijen dengan aplikasi penginderaan jauh. Data penginderaan jauh khususnya citra multispektral komposit 753 Landsat 8 dan DEM SRTM digunakan sebagai data untuk mendelineasi struktur patahan di permukaan. Suhu permukaan tanah diperoleh dari pengolahan citra thermal inframerah Landsat 8 dengan bantuan metode semi empiris. Emisivitas permukaan diperoleh berdasarkan klasifikasi indeks vegetasi NDVI daerah penelitian. Analisis data penginderaan jauh merupakan pendekatan yang cukup baik dalam mengidentifikasi struktur geologi yang mengontrol manifestasi panasbumi Blawan. Hasil interpretasi menunjukkan patahan Blawan adalah struktur utama di daerah geothermal Blawan yang berasosiasi dengan suhu permukaan tanah yang tinggi dan deretan mata air panas. Interpretasi mengindikasikan reservoir sistem panasbumi Blawan berada di bawah permukaan Plalangan dan menerus dari Plalangan menuju arah barat daya daerah penelitian.


Sign in / Sign up

Export Citation Format

Share Document