In Silico Biological Profile Prediction of Some Selectively Synthesized Acyl Rhamnopyranosides

2021 ◽  
Vol 13 (2) ◽  
pp. 657-668
Author(s):  
S. A. Chowdhury ◽  
S. C. Bhattacharjee

Over the past several decades significant biological activities including brains protective and antimicrobial activities have made sugar esters (SEs) as a topic of great interest. In this context, unimolar 3-chlorobenzoylation of methyl α-L-rhamnopyranoside (4) using dibutyltin oxide method regioselectively furnished only the 3-O-substitution product 5 in excellent yield. The reaction proceeded via the formation of a cyclic 2,3-O-dibutylstannylene intermediate where equatorial hydroxyl group is activated by the tin atom leading to the formation of product 5 only. To get biologically important rhamnopyranoside esters chlorobenzoate 5 was further converted into three newer 2,4-di-O-acyl products 6-9 with other acylating agents using direct acylation method. Prediction of activity spectra for substances (PASS) indicated that these rhamnopyranoside esters have many promising biological profiles including CYP2H substrate, membrane permeability inhibitor and better antifungal activities. Additionally, ADMET and drug likeness properties of SEs 5-8 were predicted and discussed.

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2512 ◽  
Author(s):  
Lin ◽  
Han ◽  
Li ◽  
Wang ◽  
Lai ◽  
...  

Quinoa (Chenopodium quinoa Willd.) was known as the “golden grain” by the native Andean people in South America, and has been a source of valuable food over thousands of years. It can produce a variety of secondary metabolites with broad spectra of bioactivities. At least 193 secondary metabolites from quinoa have been identified in the past 40 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-containing compounds. These metabolites exhibit many physiological functions, such as insecticidal, molluscicidal and antimicrobial activities, as well as various kinds of biological activities such as antioxidant, cytotoxic, anti-diabetic and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological activities and functions of quinoa secondary metabolites. Biosynthesis, development and utilization of the secondary metabolites especially from quinoa bran were prospected.


2020 ◽  
Vol 20 (13) ◽  
pp. 1300-1310 ◽  
Author(s):  
M. İhsan Han ◽  
Ş. Güniz Küçükgüzel

This review explains the effects of naproxen and the naproxen moiety in important biological activities. Naproxen, 2-(6-methoxynaphthalen-2-yl)propionic acid, is one of the most utilized propionic acid derivatives to the cure of many injuries or pains. Naproxen is a non-steroidal antiinflammatory drug (NSAID), which is generally used among the NSAIDs. Even though it has gastrointestinal side effects, naproxen has been safely used for many years because of the good cardiovascular sight. In the past years, except for anti-inflammatory effects, other pharmacological activities of naproxen, especially anticancer and antimicrobial activities, gain the attention of researchers. Naproxen shows its activity by inhibiting the COX-2 enzyme. There is significant interest in the possibility that COX-2 inhibitors might retard or prevent the development of various cancer types, which is often characterized by COX-2 expression. The activities of both naproxen and new molecules derived from naproxen were frequently investigated.


Planta Medica ◽  
2021 ◽  
Author(s):  
Carolina Reis Cerqueira Sudan ◽  
Lucas Campos Pereira ◽  
Andréia Fonseca Silva ◽  
Carolina Paula de Souza Moreira ◽  
Denise de Oliveira Scoaris ◽  
...  

AbstractIn the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.


2018 ◽  
Vol 25 (5) ◽  
pp. 636-658 ◽  
Author(s):  
Jan Pokorny ◽  
Lucie Borkova ◽  
Milan Urban

Triterpenoids are natural compounds with a large variety of biological activities such as anticancer, antiviral, antibacterial, antifungal, antiparazitic, antiinflammatory and others. Despite their low toxicity and simple availability from the natural resources, their clinical use is still severely limited by their higher IC50 and worse pharmacological properties than in the currently used therapeutics. This fact encouraged a number of researchers to develop new terpenic derivatives more suitable for the potential clinical use. This review summarizes a new approach to improve both, the activity and ADME-Tox properties by connecting active terpenes to another modifying molecules using click reactions. Within the past few years, this synthetic approach was well explored yielding a lot of great improvements of the parent compounds along with some less successful attempts. A large quantity of the new compounds presented here are superior in both activity and ADME-Tox properties to their parents. This review should serve the researchers who need to promote their hit triterpenic structures towards their clinical use and it is intended as a guide for the chemical synthesis of better drug candidates.


2020 ◽  
Vol 27 (14) ◽  
pp. 2335-2360 ◽  
Author(s):  
Chao Li ◽  
Dayong Shi

: Marine organisms are abundant sources of bioactive natural products. Among metabolites produced by sponges and their associated microbial communities, halogenated natural compounds accounted for an important part due to their potent biological activities. The present review updates and compiles a total of 258 halogenated organic compounds isolated in the past three decades, especially brominated derivatives derived from 31 genera of marine sponges. These compounds can be classified as the following classes: brominated polyunsaturated lipids, nitrogen compounds, brominated tyrosine derivatives and other halogenated compounds. These substances were listed together with their source organisms, structures and bioactivities. For this purpose, 84 references were consulted.


2020 ◽  
Vol 23 (21) ◽  
pp. 2271-2294 ◽  
Author(s):  
Divya Utreja ◽  
Shivali Sharma ◽  
Akhil Goyal ◽  
Komalpreet Kaur ◽  
Sonia Kaushal

Heterocyclic chemistry is the only branch of chemistry that has applications in varied areas such as dyes, photosensitizers, coordination compounds, polymeric materials, biological, and many other fields. Quinoline and its derivatives have always engrossed both synthetic chemists and biologists because of their diverse chemical and pharmacological properties as these ring systems can be easily found in various natural products, especially in alkaloids. Among alkaloids, quinoline derivatives i.e. quinolinium salts have attracted much attention nowadays owing to their diverse biological profile such as antimicrobial, antitumor, antifungal, hypotensive, anti-HIV, analgesics and anti-inflammatory, etc. Quinoline and its analogs have recently been examined for their modes of function in the inhibition of tyrosine kinases, proteasome, tubulin polymerization, topoisomerase, and DNA repair. These observations have been guiding scientists for the expansion of new quinoline derivatives with improved and varied biological activities. Quinolinium salts have immense possibilities and scope to investigate these compounds as potential drug candidates. Therefore, we shall present a concise compilation of this work to aid in present knowledge and to help researchers explore an interesting quinoline class having medicinal potential.


2020 ◽  
Vol 20 (10) ◽  
pp. 908-920 ◽  
Author(s):  
Su-Min Wu ◽  
Xiao-Yang Qiu ◽  
Shu-Juan Liu ◽  
Juan Sun

Inhibitors of monoamine oxidase (MAO) have shown therapeutic values in a variety of neurodegenerative diseases such as depression, Parkinson’s disease and Alzheimer’s disease. Heterocyclic compounds exhibit a broad spectrum of biological activities and vital leading compounds for the development of chemical drugs. Herein, we focus on the synthesis and screening of novel single heterocyclic derivatives with MAO inhibitory activities during the past decade. This review covers recent pharmacological advancements of single heterocyclic moiety along with structure- activity relationship to provide better correlation among different structures and their receptor interactions.


2019 ◽  
Vol 16 (2) ◽  
pp. 258-275 ◽  
Author(s):  
Navjeet Kaur

Background:A wide variety of biological activities are exhibited by N, O and S containing heterocycles and recently, many reports appeared for the synthesis of these heterocycles. The synthesis of heterocycles with the help of metal and non-metal catalyst has become a highly rewarding and important method in organic synthesis. This review article concentrated on the synthesis of S-heterocylces in the presence of metal and non-metal catalyst. The synthesis of five-membered S-heterocycles is described here.Objective:There is a need for the development of rapid, efficient and versatile strategy for the synthesis of heterocyclic rings. Metal, non-metal and organocatalysis involving methods have gained prominence because traditional conditions have disadvantages such as long reaction times, harsh conditions and limited substrate scope.Conclusion:The metal-, non-metal-, and organocatalyst assisted organic synthesis is a highly dynamic research field. For ßthe chemoselective and efficient synthesis of heterocyclic molecules, this protocol has emerged as a powerful route. Various methodologies in the past few years have been pointed out to pursue more sustainable, efficient and environmentally benign procedures and products. Among these processes, the development of new protocols (catalysis), which avoided the use of toxic reagents, are the focus of intense research.


2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


2020 ◽  
Vol 17 (8) ◽  
pp. 922-945
Author(s):  
Andrés-Felipe Villamizar-Mogotocoro ◽  
Andrés-Felipe León-Rojas ◽  
Juan-Manuel Urbina-González

The five-membered oxacyclic system of furan-2(5H)-ones, commonly named as γ- butenolides or appropriately as Δα,β-butenolides, is of high interest since many studies have proven its bioactivity. During the past few years, Δα,β-butenolides have been important synthetic targets, with several reports of new procedures for their construction. A short compendium of the main different synthetic methodologies focused on the Δα,β-butenolide ring formation, along with selected examples of compounds with relevant biological activities of these promising pharmaceutical entities is presented.


Sign in / Sign up

Export Citation Format

Share Document