scholarly journals Application of microbiological assay to determine the potency of intravenous antibiotics

2020 ◽  
Vol 10 (1) ◽  
pp. 25-29
Author(s):  
Saimun Nahar ◽  
Most Salma Khatun ◽  
Md Shahidul Kabir

Demonstration of equivalent amounts of active pharmaceutical ingredient is a basic requirement for intravenous generic drugs prior to administration. Physicochemical methods are often used to determine concentration of antibiotics in biological fluids. However, it does not permit direct quantification of potency of a desired antibiotic. This study demonstrates the application of a microbiological assay to determine the potency and concentration of commercially available pharmaceutical-grade antibiotics used for injections. Concentration-dependent variation of inhibitory effect of four commercial brands of cefuroxime and two of ciprofloxacin were observed against two reference bacteria (Escherichia coli DH5α and Escherichia coli ATCC 8739) on Mueller Hinton agar. Regression analysis was used to assess the in vitro equivalence of generic products sold by different retail companies in Dhaka city. A linear relationship was found between the concentration and response of the bacteria in regression analysis where anti-log of X-intercept and slope showed the concentration and potency, respectively. The study showed excellent results of linearity (r2≥0.89), precision (inter assay variation ≤10% for cefuroxime and ≤20% for ciprofloxacin), accuracy and specificity tests for both types of antibiotics. Pharmaceutical equivalence demonstrated by four cefuroxime and two ciprofloxacin samples showed no significantly distinguishable slopes (P > 0.78 and P > 0.44) and intercepts (P > 0.25 and P > 0.07), respectively. Estimated potency for cefuroxime was 91.1-100.0% and for ciprofloxacin was 68.1-100.0%. Microbiological assay was found to be convenient, rapid, cost-effective, precise and accurate in demonstrating pharmaceutical equivalence of antibiotics in different dosage forms. This technique can be used as an alternative method for testing generic antibiotics prior to their use in animal and human. Stamford Journal of Microbiology, Vol.10 (1) 2020: 25-29

Author(s):  
Daniel Chavarría-Bolaños ◽  
Vicente Esparza-Villalpando ◽  
Karol Ramírez

Chlorhexidine was introduced almost seven decades ago and has a myriad of applications in dentistry. Few studies have evaluated the antimicrobial and antifungal capacity of different concentrations of chlorhexidine mouthwashes. Therefore, the aim of this study, was to evaluate in vitro, the antibacterial and antifungal capacity of three commercially available mouthwashes in Costa Rica, with different concentrations of chlorhexidine, 0.12%, 0.06%, and 0.03%. The experimental method selected was the Kirby-Bauer method to evaluate the antibacterial and antifungal effect of each compound by measuring the inhibitory effect on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Candida albicans strains, exposed to the antiseptic solutions. All samples showed some degree of antibacterial and antifungal effect. Even though we provide in vitro results, our findings are of relevance since all the species used in our experiment are microorganisms that may be present in dental plaque. Our results further support evidence that oral hygiene regimens may include mouthwashes with low doses of chlorhexidine and maintain reasonable antibacterial and antifungal efficacy.


2007 ◽  
Vol 90 (5) ◽  
pp. 1379-1382 ◽  
Author(s):  
Andréia De Haro Moreno ◽  
Hérida Regina Nunes Salgado

Abstract A simple, sensitive, and specific biodiffusion assay for the antibacterial ceftazidime was developed using a strain of Staphylococcus epidermidis (ATCC 12228) as the test organism. Ceftazidime was measured in powder for injection at concentrations ranging from 100 to 400 g/mL. The calibration graph for ceftazidime was linear (r2 = 1), and the method validation showed that it was precise (relative standard deviation = 0.415) and accurate. The results obtained by biodiffusion assay were statistically calculated by linear parallel model and by means of regression analysis and were verified using analysis of variance. It was concluded that the microbiological assay is satisfactory for in vitro quantification of the antibacterial activity of ceftazidime in pharmaceuticals.


Sensor Review ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 828-834
Author(s):  
Andreas Diermeier ◽  
Dirk Sindersberger ◽  
Peter Angele ◽  
Richard Kujat ◽  
Gareth John Monkman

Purpose Ultrasound is a well-established technology in medical science, though many of the conventional measurement systems (hydrophones and radiation force balances [RFBs]) often lack accuracy and tend to be expensive. This is a significant problem where sensors must be considered to be “disposable” because they inevitably come into contact with biological fluids and expense increases dramatically in cases where a large number of sensors in array form are required. This is inevitably the case where ultrasound is to be used for the in vitro growth stimulation of a large plurality of biological samples in tissue engineering. Traditionally only a single excitation frequency is used (typically 1.5 MHz), but future research demands a larger choice of wavelengths for which a single broadband measurement transducer is desirable. Furthermore, because of implementation conditions there can also be large discrepancies between measurements. The purpose of this paper deals with a very cost-effective alternative to expensive RFBs and hydrophones. Design/methodology/approach Utilization of cost-effective piezoelectric elements as broadband sensors. Findings Very effective results with equivalent (if not better) accuracy than expensive alternatives. Originality/value This paper concentrates on how very cost-effective piezoelectric ultrasound transducers can be implemented as sensors for ultrasound power measurements with accuracy as good, if not better than those achievable using radiation force balances or hydrophones.


1988 ◽  
Vol 34 (3) ◽  
pp. 344-351 ◽  
Author(s):  
Gregor Reid ◽  
Jacqueline A. McGroarty ◽  
Rosanne Angotti ◽  
Roger L. Cook

Previous investigations have shown that certain strains of lactobacilli can competitively exclude uropathogens from attaching to uroepithelial cells and from causing urinary tract infection in animals. The finding of an inhibitory effect produced by Lactobacillus casei ssp. rhamnosus GR-1 against the growth of uropathogens was investigated further using two Escherichia coli indicator strains Hu 734 and ATCC 25922. There were two phases to the inhibitor studies. The first one using an agar sandwich technique showed that the inhibitor activity was heat stable and inhibitory to the E. coli. The second phase showed that MRS broth provided optimum lactobacilli growth and inhibitor production. In addition, the inhibition was present under conditions buffering for acid and pH. The data indicated that the inhibitory effect was not due to bacteriophages or hydrogen peroxide. Strain GR-1 was found to coaggregate with E. coli ATCC 25922 in urine, a phenomenon that has not previously been reported for urogenital bacteria. An in vitro assay system was developed to study the coaggregation of various lactobacilli and uropathogens. The results demonstrated that highest coaggregation scores occurred after 4 h incubation at 37 °C with lactobacilli and two type-1 fimbriated E. coli strains. Of the nine lactobacilli strains tested, each was found to coaggregate with 2 or more of the 13 uropathogens. The dominance of inhibitor-producing lactobacilli on the urogenital epithelium and the ability of these organisms to interact closely with uropathogens would constitute an important host defense mechanism against infection.


2014 ◽  
Vol 82 (5) ◽  
pp. 1801-1812 ◽  
Author(s):  
Sylvia Kleta ◽  
Marcel Nordhoff ◽  
Karsten Tedin ◽  
Lothar H. Wieler ◽  
Rafal Kolenda ◽  
...  

ABSTRACTEnteropathogenicEscherichia coli(EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probioticE. colistrain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While bothin vitroandin vivostudies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenicE. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenicE. coli(aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.


2010 ◽  
Vol 54 (8) ◽  
pp. 3271-3279 ◽  
Author(s):  
Omar Vesga ◽  
Maria Agudelo ◽  
Beatriz E. Salazar ◽  
Carlos A. Rodriguez ◽  
Andres F. Zuluaga

ABSTRACT Generic versions of intravenous antibiotics are not required to demonstrate therapeutic equivalence with the innovator because therapeutic equivalence is assumed from pharmaceutical equivalence. To test such assumptions, we studied three generic versions of vancomycin in simultaneous experiments with the innovator and determined the concentration and potency of the active pharmaceutical ingredient by microbiological assay, single-dose pharmacokinetics in infected mice, antibacterial effect by broth microdilution and time-kill curves (TKC), and pharmacodynamics against two wild-type strains of Staphylococcus aureus by using the neutropenic mouse thigh infection model. The main outcome measure was the comparison of magnitudes and patterns of in vivo efficacy between generic products and the innovator. Except for one product exhibiting slightly greater concentration, vancomycin generics were undistinguishable from the innovator based on concentration and potency, protein binding, in vitro antibacterial effect determined by minimal inhibitory or bactericidal concentrations and TKC, and serum pharmacokinetics. Despite such similarities, all generic products failed in vivo to kill S. aureus, while the innovator displayed the expected bactericidal efficacy: maximum antibacterial effect (E max) (95% confidence interval [CI]) was 2.04 (1.89 to 2.19), 2.59 (2.21 to 2.98), and 3.48 (2.92 to 4.04) versus 5.65 (5.52 to 5.78) log10 CFU/g for three generics and the innovator product, respectively (P < 0.0001, any comparison). Nonlinear regression analysis suggests that generic versions of vancomycin contain inhibitory and stimulatory principles within their formulations that cause agonistic-antagonistic actions responsible for in vivo failure. In conclusion, pharmaceutical equivalence does not imply therapeutic equivalence for vancomycin.


Author(s):  
Mamoudou Hamadou ◽  
Bakari Daoudou ◽  
Baane Martin- Paul ◽  
Salamatou Mohamadou ◽  
Djoulde Darman Roger

The objective of the study was to evaluate in vitro inhibitory effect of methanolic and methanolic-aqueous mixture extracts of Plectranthus neochilus Schltr (P. neochilus) and Bauhinia rufescens Lam (B. rufescens) on the growth of Escherichia coli 25922 and Proteus mirabilis. A phytochemical screening was carried out to highlight compounds (phenolic compounds, flavonoids, alkaloids) with antibacterial activity. Then, an antibiogram was Carried out to investigate the enzymes rendering the resistance. Finally, the E-test was used to evaluate the antibacterial activity of the extract mixture. The Screening results showed that both plants contain total phenolics, flavonoids and alkaloids compounds. The antibiogram has made it possible to establish the sensitivity profile of the strains tested with regard to certain antibiotics. The extract mixture showed antibacterial activity on both strains tested. In the present work, the different mixtures of extracts showed an inhibitory effect on Escherichia coli 25922 [a strain sensitive to almost all the antibiotics tested, in particular the three classes: beta-lactams (Ceftazidine, Ceftriaxone, Meropenem), quinolones (Levofloxacin, Ciprofloxacin) and aminoglycosides (Gentamicin, Amikacin)] and on Proteus mirabilis (a multiresistant strain with almost all the antibiotics tested).


2004 ◽  
Vol 67 (5) ◽  
pp. 884-888 ◽  
Author(s):  
THIRUNAVUKKARASU ANNAMALAI ◽  
MANOJ KUMAR MOHAN NAIR ◽  
PATRICK MAREK ◽  
PRADEEP VASUDEVAN ◽  
DAVID SCHREIBER ◽  
...  

The antibacterial effect of caprylic acid (35 and 50 mM) on Escherichia coli O157:H7 and total anaerobic bacteria at 39° C in rumen fluid (pH 5.6 and 6.8) from 12 beef cattle was investigated. The treatments containing caprylic acid at both pHs significantly reduced (P &lt; 0.05) the population of E. coli O157:H7 compared with that in the control samples. At pH 5.6, both levels of caprylic acid killed E. coli O157:H7 rapidly, reducing the pathogen population to undetectable levels at 1 min of incubation (a more than 6.0-log CFU/ml reduction). In buffered rumen fluid at pH 6.8, 50 mM caprylic acid reduced the E. coli O157:H7 population to undetectable levels at 1 min of incubation, whereas 35 mM caprylic acid reduced the pathogen by approximately 3.0 and 5.0 log CFU/ml at 8 and 24 h of incubation, respectively. At both pHs, caprylic acid had a significantly lesser (P &lt; 0.05) and minimal inhibitory effect on the population of total anaerobic bacteria in rumen compared with that on E. coli O157:H7. At 24 h of incubation, caprylic acid (35 and 50 mM) reduced the population of total anaerobic bacteria by approximately 2.0 log CFU/ml at pH 5.6, whereas at pH 6.8, caprylic acid (35 mM) did not have any significant (P &gt; 0.05) inhibitory effect on total bacterial load. Results of this study revealed that caprylic acid was effective in inactivating E. coli O157:H7 in bovine rumen fluid, thereby justifying its potential as a preslaughter dietary supplement for reducing pathogen carriage in cattle.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118 ◽  
Author(s):  
Mercedeh Tajbakhsh ◽  
Maziar Akhavan ◽  
Fatemeh Fallah ◽  
Abdollah Karimi

The emergence of antimicrobial resistance among pathogenic microorganisms has been led to an urgent need for antibiotic alternatives. Antimicrobial peptides (AMPs) have been introduced as promising therapeutic agents because of their remarkable potentials. A new modified cathelicidin-BF peptide (Cath-A) with 34 amino acid sequences, represents the potential antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) with slight hemolytic and cytotoxic activities on eukaryotic cells. In this study, the effects of Cath-A on Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from medical instruments were studied. Cath-A inhibited the growth of bacterial cells in the range of 8–16 μg/mL and 16-≥256 μg/mL for A. baumannii and P. aeruginosa, respectively. The peptide significantly removed the established biofilms. To display a representative approach for the cost-effective constructions of peptides, the recombinant Cath-A was cloned in the expression vector pET-32a(+) and transformed to Escherichia coli BL21. The peptide was expressed with a thioredoxin (Trx) sequence in optimum conditions. The recombinant peptide was purified with a Ni2+ affinity chromatography and the mature peptide was released after removing the Trx fusion protein with enterokinase. The final concentration of the partially purified peptide was 17.6 mg/L of a bacterial culture which exhibited antimicrobial activities. The current expression and purification method displayed a fast and effective system to finally produce active Cath-A for further in-vitro study usage.


Sign in / Sign up

Export Citation Format

Share Document