Crystallization Behavior Evaluations of the Mold Powder by DTA

Author(s):  
J. Gilmore ◽  
Y. Okada ◽  
D. Iwamoto ◽  
M. Katayama
Author(s):  
T.R. Dinger ◽  
G. Thomas

The use of Si3N4, alloys for high temperature, high stress structural applications has prompted numerous studies of the oxynitride glasses which exist as intergranular phases in their microstructures. Oxynitride glasses have been investigated recently in their bulk form in order to understand their crystallization behavior for subsequent Si3N4 applications and to investigate their worth as glass-ceramic precursors. This research investigates the crystallization sequence of a glass having a normalized composition of Y26Si30Al11 ON11 and lying in the A1N-Y2O3-SiO2 section of the Y-Si-Al-O-N system. Such glasses exist as intergranular phases in the technologically important Y2O3/Al2O3-fluxed Si3N4 alloys.


2018 ◽  
Vol 33 (2) ◽  
pp. 234-244 ◽  
Author(s):  
M. Shibutani ◽  
T. Yamamoto ◽  
K. Inoue ◽  
K. Tokumitsu

2019 ◽  
Author(s):  
F.X. Bai ◽  
S.J. Zheng ◽  
Y.X. Wang ◽  
J. Pan ◽  
J.H. Yao ◽  
...  

2018 ◽  
Vol 116 (1) ◽  
pp. 110
Author(s):  
Lixiong Shao ◽  
Jiang Diao ◽  
Wang Zhou ◽  
Tao Zhang ◽  
Bing Xie

The growth behaviour of spinel crystals in vanadium slag with high Cr2O3 content was investigated and clarified by statistical analyses based on the Crystal Size Distribution (CSD) theory. The results indicate that low cooling rate and Cr2O3 content benefit the growth of spinel crystals. The chromium spinel crystals firstly precipitated and then acted as the heterogeneous nuclei of vanadium and titanium spinel crystals. The growth mechanisms of the spinel crystals at the cooling rate of 5 K/min consist two regimes: firstly, nucleation control in the temperature range of 1873 to 1773 K, in which the shapes of CSD curves are asymptotic; secondly, surface and supply control within the temperature range of 1773 to 1473 K, in which the shapes of CSD curves are lognormal. The mean diameter of spinel crystals increases from 3.97 to 52.21 µm with the decrease of temperature from 1873 to 1473 K.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1851
Author(s):  
Hye-Seon Park ◽  
Chang-Kook Hong

Poly (l-lactic acid) (PLLA) is a promising biomedical polymer material with a wide range of applications. The diverse enantiomeric forms of PLLA provide great opportunities for thermal and mechanical enhancement through stereocomplex formation. The addition of poly (d-lactic acid) (PDLA) as a nucleation agent and the formation of stereocomplex crystallization (SC) have been proven to be an effective method to improve the crystallization and mechanical properties of the PLLA. In this study, PLLA was blended with different amounts of PDLA through a melt blending process and their properties were calculated. The effect of the PDLA on the crystallization behavior, thermal, and mechanical properties of PLLA were investigated systematically by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), polarized optical microscopy (POM), dynamic mechanical analysis (DMA), and tensile test. Based on our findings, SC formed easily when PDLA content was increased, and acts as nucleation sites. Both SC and homo crystals (HC) were observed in the PLLA/PDLA blends. As the content of PDLA increased, the degree of crystallization increased, and the mechanical strength also increased.


Sign in / Sign up

Export Citation Format

Share Document