scholarly journals Simulasi Pemodelan Sistem Eksitasi Statis pada Generator Sinkron terhadap Perubahan Beban

2019 ◽  
Vol 11 (2) ◽  
pp. 46-54
Author(s):  
Hastuti Azis ◽  
Pawenary Pawenary ◽  
Meyhart Torsna Bangkit Sitorus

Excitation system is one of the most important parts of synchronous generators, where the system functions to provide dc power to the field generator coil. Iin this study, a static excitation system consisting of transformers and connected thyristors in bridge configuration has been implemented in synchronous machines that operate as 206,1 mva capacity generators, 16,5 kv using the help of matlab simulink r2017b software. By adjusting the load given to the generator, variations in excitation currents can affect the amount of output voltage generated by the generator so that it can increase and decrease the induced voltage. In full load conditions, namely p = 175 mw, q = 100 mvar, the results of the study show that when the simulation is run at alpha 0 °, it is known that the average value of dc voltage is 496,4 v, excitation current is 1057 a and voltage generator output has increased beyond its nominal voltage of 16,72 kv. in this case, to maintain the terminal voltage, the excitation current must be reduced by increasing the angle of shooting of the thyristor to an alpha angle of 45 °, so that the average dc voltage can be reduced to 479,3 v, as well as the excitation current to 985,9 a. the generator output voltage at the alpha 45 ° angle is obtained according to its nominal value of 1,.5 kv.

2011 ◽  
Vol 383-390 ◽  
pp. 3535-3538 ◽  
Author(s):  
Qing Shan Ji ◽  
Yan Qing Wu ◽  
Hong Yan Hao

The brushless constant-voltage synchronous generators are fitted with thyristor voltage regulator excitation system. The excitation current can be regulated automatically in accordance with the variation of load, resulting in constant voltage. This style of excitation has excellent kinetic in the condition of load-variation and short-circuit.


2020 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Irwan Anto Mina ◽  
Mokh. Sidqi Fahmi

<p>Excitation system is a system that conducts electric current in the same direction as a generator in a power plant, so that it produces electricity and a large voltage on the increase in the excitation current. In modern regulatory systems, excitation plays an important role in controlling the stability of a development because it involves load fluctuations, so excitation as a controller will require control of the generator output such as voltage, current and power factors in a necessary manner. If the excitation current rises, the reactive power supplied by the system generator will increase otherwise if the reactive power supplied will decrease. If the given excitation current is too small, the reactive power flow will move from the system to the generator so that the generator absorbs the reactive power from the system. This situation is very dangerous because it will cause excessive savings on the stator.</p><p><strong>Keywords</strong>:<em> G</em>enerator, excitation system, transformer, rectifier.</p>


Author(s):  
Abiodun Ogunseye ◽  
Daniel Ogheneovo Johnson

A power inverter circuits is normally designed to meet its design specifications when the applied input DC voltage is within specified tolerance limits. Thus, single input inverters are usually specified to work from a DC source having a fixed nominal voltage. This limits the usefulness of the inverter circuit when a DC source having the specified nominal voltage is not available. In this work, a modified square wave inverter system that is specified to work properly from batteries with nominal voltages of 6, 12, 18 and 24 V was designed.  A model of the microcontroller-based circuit was developed with Proteus® software and its firmware was written in C language using the MicroC® development tool. A prototype of the circuit was constructed and then tested.  The constructed circuit was found to work properly by producing a 50 Hz modified square waveform when it was powered from batteries having nominal voltages of 6 V, 12 V, 18 V and 24 V.


2013 ◽  
Vol 13 (4) ◽  
pp. 139-147 ◽  
Author(s):  
Junsheng Jiao

Abstract The output voltage of Solid Oxide Fuel Cell (SOFC) is usually changed with the temperature and hydrogen flow rate. Since the fuel cell can generate a wide range of voltages and currents at the terminals, as a consequence, a constant DC voltage and function cannot be maintained by itself as a DC voltage power supply source. To solve this problem, a simple SOFC electrochemical model is introduced to control the output voltage. The Sliding Mode Control (SMC) is used to control the output voltage of the DC-DC converter for maintaining the constant DC voltage when the temperature and hydrogen flow rate are changed. By the simulation results it can be seen that the SMC technique has improved the transient response and reduced the steady state error of DC voltage.


Author(s):  
Habibullah Salim ◽  
Irma Husnaini ◽  
Asnil Asnil

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits. The results obtained from the test using a 100 Ohm 5 Watt load obtained the buck converter output voltage of 12.4 Volt.


Author(s):  
R. Palanisamy ◽  
A. Velu ◽  
K. Selvakumar ◽  
D. Karthikeyan ◽  
D. Selvabharathi ◽  
...  

This paper deals the implementation of 3-level output voltage using dual 2-level inverter with control of sub-region based Space Vector Modulation (SR-SVM). Switching loss and voltage stress are the most important issues in multilevel inverters, for keep away from these problems dual inverter system executed. Using this proposed system, the conventional 3-level inverter voltage vectors and switching vectors can be located. In neutral point clamped multilevel inverter, it carries more load current fluctuations due to the DC link capacitors and it requires large capacitors. Based on the sub-region SVM used to control IGBT switches placed in the dual inverter system. The proposed system improves the output voltage with reduced harmonic content with improved dc voltage utilisation. The simulation and hardware results are verified using matlab/simulink and dsPIC microcontroller.


2008 ◽  
Vol 128 (3) ◽  
pp. 244-250
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

2010 ◽  
Vol 170 (3) ◽  
pp. 40-47
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

Sign in / Sign up

Export Citation Format

Share Document