scholarly journals Antioxidant Activity of Silver-containing Bionanocompositions Based on Humic Substances in Cell Culture

2021 ◽  
Vol 10 (4) ◽  
pp. 46-53
Author(s):  
E. E. Buyko ◽  
M. V. Zykova ◽  
V. V. Ivanov ◽  
K. A. Bratishko ◽  
A. A. Ufandeev ◽  
...  

Introduction. Silver nanoparticles are promising agents for suppressing resistant strains of microorganisms and accelerating the purulent wounds healing. Oxidative stress disrupts normal wound healing processes, which leads to the formation of chronic non-healing wounds. Therefore, the determination of the ability of new wound healing agents to decrease the production of reactive oxygen species is a relevant task.Aim. The aim of the current study was to investigate the effect of silver-containing bionanocompositions based on humic substances on the basal and tert-butyl hydroperoxide-stimulated production of reactive oxygen species at the normal fibroblasts 3T3-L1 cell culture in vitro.Materials and methods. The study was carried out on 7 samples of initial humic substances and biomaterials with silver nanoparticles synthesized in the Laboratory of Natural Humic Systems, Faculty of Chemistry, Moscow State University named after M. V. Lomonosov. The intracellular production of reactive oxygen species was assessed using a 2,7-dichlorodihydrofluorescein diacetate fluorescent probe. Cells were cultured with samples for 24 h; tret-butyl hydroperoxide was used to stimulate the production of reactive oxygen species. Detection was performed fluorometrically using a microplate reader.Results and discussion. The most pronounced antioxidant activity was demonstrated by three samples of biomaterials with silver nanoparticles ultradispersed in humic substances matrices (CHS-AgNPs, CHP-AgNPs and CHE-AgNPs), which allows us to consider them as the most promising pharmaceutical agents for the treatment of purulent-inflammatory processes. The most probable mechanism of the high antioxidant activity of the studied biomaterials in relation to intracellular reactive oxygen species is the intrinsic activity of humic substances to bind reactive oxygen species, while silver nanoparticles in biomaterials catalyze the reduction processes of their interaction with reactive oxygen species.Conclusion. For the studied samples of biomaterials with silver nanoparticles ultradispersed in matrices of humic substances pronounced antioxidant activity was shown. Together with antibacterial properties, it makes it possible to consider them as potential agents for purulent wounds healing accelerating.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


2021 ◽  
Vol 124 ◽  
pp. 219-232 ◽  
Author(s):  
Hao Cheng ◽  
Zhe Shi ◽  
Kan Yue ◽  
Xusheng Huang ◽  
Yichuan Xu ◽  
...  

2014 ◽  
Vol 320 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Nina Tandon ◽  
Elisa Cimetta ◽  
Aranzazu Villasante ◽  
Nicolette Kupferstein ◽  
Michael D. Southall ◽  
...  

Nanoscale ◽  
2022 ◽  
Author(s):  
Liming Peng ◽  
Xuyang Yang ◽  
Song Wang ◽  
Joseph Yau Kei Chan ◽  
Yong Chen ◽  
...  

Antibacterial chemodynamic therapy (aCDT) has captured considerable attention in the treatment of pathogen-induced infection due to its potential to inactivate bacteria through germicidal reactive oxygen species (ROS). However, the lifespan...


Chemotherapy ◽  
2021 ◽  
Author(s):  
Yassmin Isse Wehelie ◽  
Naveed Ahmed Khan ◽  
Itrat Fatima ◽  
Areeba Anwar ◽  
Kanwal Kanwal ◽  
...  

Background: Acanthamoeba castellanii is a pathogenic free-living amoeba responsible for blinding keratitis and fatal granulomatous amoebic encephalitis. However, treatments are not standardized but can involve the use of amidines, biguanides, and azoles. Objectives: The aim of this study was to synthesize a variety of synthetic tetrazole derivatives and test their activities against A. castellanii. Methods: A series of novel tetrazole compounds were synthesized by one-pot method and characterized by NMR and mass spectroscopy. These compounds were subjected to amoebicidal, and cytotoxicity assays against A. castellanii belonging to the T4 genotype and human keratinocyte skin cells respectively. Additionally, reactive oxygen species determination and electron microscopy studies were carried out. Furthermore, two of the seven compounds were conjugated with silver nanoparticles to study their antiamoebic potential. Results: A series of seven tetrazole derivatives were synthesized successfully. The selected tetrazoles showed anti-amoebic activities at 10µM concentration against A. castellanii in vitro. The compounds tested caused increased reactive oxygen species generation in A castellanii, and significant morphological damage to amoebal membranes. Moreover, conjugation of silver nanoparticles enhanced antiamoebic effects of two tetrazoles. Conclusions: The results showed that azole compounds hold promise in the development of new formulations of anti-Acanthamoebic agents.


Author(s):  
Zi-Yu Chen ◽  
Yu-Chen Su ◽  
Fong-Yu Cheng ◽  
Shian-Jang Yan ◽  
Ying-Jan Wang

Engineered nanoparticles raise safety concerns. Silver nanoparticles (AgNPs) exert acute and chronic adverse effects by inducing reactive oxygen species (ROS)-mediated stress signaling pathways. We investigated the mechanisms by which AgNPs...


Sign in / Sign up

Export Citation Format

Share Document