Daylighting Dynamic Control by Smart Window with Grating Optical Filter

2021 ◽  
pp. 27-32
Author(s):  
Irina A. Odenbakh

A smart window with a novel grating optical filter is proposed, which supplies dynamic daily and annual control of window transmission without the use of blinds and similar devices. The filter attenuates direct solar radiation, letting in diffused and reflected radiation, thus creating more comfortable conditions for daylighting, insolation, and sun protection in rooms. A method for calculating the grating filter is changed and numerical modelling is conducted to show the capabilities of the new method of dynamic control of transmission. The optimal geometric parameters of the filter for a single-glazed smart window at a given azimuth of the window orientation are determined. The hourly values of the light transmittance of the filter during daylighting hours are calculated for the 15th day of each month from April to September, and the theoretical angular characteristics of the transmission of the filter, corrected for reflection and absorption, are constructed. The average monthly values of the theoretical and corrected light transmittance of a smart window are obtained, based on the results of calculations every hour compared to the time of day when the azimuths of the Sun and the window are equal. It is shown that the smart window with the built-in grating optical filter provides the minimum transmission at a given time of the day, taking into account the azimuth of the window, the geographic coordinates of the building, the seasonal and daily distribution of the solar radiation intensity on the calculated day of the year, and in the rest of the time, with the most demanded protection from solar radiation, the filter functions within acceptable limits. It is stated that the smart window with the built-in optical filter is most suitable for rooms with a long stay of people during daylight hours that is for office, educational, industrial, etc. rooms, in order to provide comfortable daylighting and the required insolation and thermal conditions during working hours.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Rustam S. Zakirullin

Thin-film grating coatings are proposed for smart windows to angular selective filtering of solar radiation. The gratings are formed by absorptive, reflective, or scattering parallel strips (made of chromogenic or other materials) alternating with directionally transmissive strips (untreated surface of pure glass) on two surfaces of the window pane(s). The smart window with grating optical filter has angular selective light transmission and partially or completely blocks the direct solar radiation in a preset angular range and transmits the scattered and reflected radiation without using the daylight redistribution devices. The results of numerical simulation and experimental confirmation of optimum slope angle of the strips on the pane(s), their widths, and relative position on two surfaces to minimize the directional light transmission of the window at the preset date and time of day taking into account orientation of the window to the cardinal, the latitude of the building, and the seasonal and daily distribution of the solar radiation intensity are demonstrated.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Tamer Khatib ◽  
Irjuwan Abunajeeb ◽  
Zainab Heneni

Missions to Mars need a power source, while, one of the most compatible sources for such a purpose is the photovoltaic system. Photovoltaic systems generate power based on the available energy from the Sun, and thus, solar radiation intensity at Mars should be known for design purposes. In this research, the feed-forward back-propagation artificial neural network is developed to predict solar radiation in terms of longitude, latitude, time of the day, temperature, altitude, pressure, amount of dust, and volume mixing ratio of water ice clouds. Data which are used to develop this model are obtained from the Mars Climate Database. The results of the developed method are accurate as compared with other methods whereas the correlation (R2) coefficient for the developed model is 0.97. The developed model then is used to predict mean solar radiation and mean temperature for every location on Mars and then the data are presented on Mars maps in order to determine the best location for harvesting energy from the Sun by photovoltaic systems. According to results, the solar radiation-temperature belt on Mars is found to be between latitudes 20 deg south and 15 deg north.


1962 ◽  
Vol 16 (1) ◽  
pp. 24-31 ◽  
Author(s):  
P.V. Angus-Leppan

The coefficient of refraction is far from constant. It varies chiefly because of changes in the vertical temperature gradient of the atmosphere. From measurements of vertical angles between points of known heights, observed angles of refraction can be deduced. By the use of simultaneous meteorological measurements, various methods of calculating refraction are developed. It is necessary to derive a formula representing temperature as a function of height and time of day. Calculated refraction compares accurately with observed, especially when solar radiation intensity measurements are used.


2019 ◽  
Vol 124 ◽  
pp. 01002
Author(s):  
R. Zakirullin ◽  
I. Odenbakh

A new approach to angular selective filtering of the solar radiation without using the sunlight redistribution devices is proposed. Parallel strips of chromogenic materials on two surfaces of the pane(s) form an optical filter having angular selective light transmission. Clarified methods to calculate the optimum slope angle of the strips on the pane(s), their widths and relative position on two surfaces considering the seasonal and daily change in the solar radiation, the location of the building and the window’s azimuth are presented. Such a smart window blocks the direct radiation in a preset angular range and transmits the scattered and reflected radiation that is provides comfortable daylighting indoors.


2011 ◽  
Vol 128-129 ◽  
pp. 1456-1459
Author(s):  
Lin Qiu ◽  
Yue Zou ◽  
Li Huang ◽  
Geng Ren

The paper investigated the efficient model of solar wall and the operation modes of solar wall system on buildings application, The construction of efficient solar wall was devised and experiment studied the operation effect. In order to find out the relationship between solar radiation and outlet air temperature, the air temperature change per unit solar radiation intensity (▽) was introduced. Study given: the system function or use of shade structures and architecture integration measures, relative to the building directly by the sun exposure, the surface temperature of building with the efficient solar wall can be achieved a more substantial cooling; the same time the system can be improved through natural convection air-conditioned room air quality will not result in excessive waste of energy. Solar radiation is the decisive factor in the process of heating air. to meet the requirement of indoor heating, the reasonable range of ▽ is 5.63-6.35, the optimum system wind velocity would be 3 m/s-7m/s.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Yuan Deng ◽  
Shi-Qin Li ◽  
Qian Yang ◽  
Zhi-Wang Luo ◽  
He-Lou Xie

Smart windows can dynamically and adaptively adjust the light transmittance in non-energy or low-energy ways to maintain a comfortable ambient temperature, which are conducive to efficient use of energy. This work proposes a liquid crystal (LC) smart window with highly efficient near-infrared (NIR) response using carbon nanotubes grafted by biphenyl LC polymer brush (CNT-PDB) as the orientation layer. The resultant CNT-PDB polymer brush can provide the vertical orientation of LC molecules to maintain the initial transparency. At the same time, the smart window shows a rapid response to NIR light, which can quickly adjust the light transmittance to prevent sunlight from entering the room. Different from common doping systems, this method avoids the problem of poor compatibility between the LC host and photothermal conversion materials, which is beneficial for improving the durability of the device.


2019 ◽  
Vol 29 (8) ◽  
pp. 1101-1117
Author(s):  
Lin Yang ◽  
Xiangdong Li ◽  
Jiyuan Tu

Due to the fast development of high-speed rail (HSR) around the world, high-speed trains (HSTs) are becoming a strong competitor against airliners in terms of long-distance travel. Compared with airliner cabins, HST cabins have much larger window sizes. When the big windows provide better lighting and view of the scenery, they also have significant effects on the thermal conditions in the cabins due to the solar radiation through them. This study presents a numerical study on the solar radiation on the thermal comfort in a typical HST cabin. The effect of solar radiation was discussed in terms of airflow pattern, temperature distribution and thermal comfort indices. Parametric studies with seven different daytime hours were carried out. The effect of using the roller curtain was also studied. The overall cabin air temperature, especially near passengers, was found to have significantly increased by solar radiation. Passengers sitting next to windows were recorded to have an obvious thermal comfort variation at different hours of the day. To improve the passengers’ comfort and reduce energy consumption during hot weather, the use of a curtain could effectively reduce the solar radiation effect in the cabin environment.


2016 ◽  
Vol 181 ◽  
pp. 1-6 ◽  
Author(s):  
E. Ortega-Gómez ◽  
M.M. Ballesteros Martín ◽  
B. Esteban García ◽  
J.A. Sánchez Pérez ◽  
P. Fernández Ibáñez

Sign in / Sign up

Export Citation Format

Share Document