scholarly journals Impact of land use in areas of buffer zone around Cicuta’s Forest, Volta Redonda, Rio de Janeiro, Brazil

2020 ◽  
Vol 9 (9) ◽  
pp. e909998121
Author(s):  
Adriana de Vasconcellos ◽  
Fabiana Soares dos Santos ◽  
Welington Kiffer de Freitas ◽  
Alexander Silva de Resende

Anthropic actions have caused the degradation of Brazilian soils, especially due to reduced forest cover. The objective of this work was to evaluate soil attributes in areas under different forms of land use, located in the buffer zone of the Relevant Ecological Interest Area (ARIE) Cicuta Forest, middle Paraiba do Sul Valley, Rio de Janeiro, Brazil. Eight plots (10m × 12.5m) were installed in three different forms of land use (degraded pasture area; reforestation area with native species; and a fragment of a forest area) for evaluation of chemical and biological parameters. Although the fragment of a forest area presents a greater homogeneity regarding the nitrogen, polyphenols, humidity, and pH parameters, which shows greater environmental stability in this area, the microbiological parameters showed that there is a low activity, which might be indicative of a degraded environment, probably due to the small size of the forest fragment present in the buffer zone of the Relevant Ecological Interest Area (ARIE) Cicuta Forest.

2016 ◽  
Vol 4 (3) ◽  
pp. 35
Author(s):  
Agustin Arisandi Mustika ◽  
Samsul Bakri ◽  
Dyah Wulan S. R. Wardani

The conversion of forest area into non-forest area generally can causing the ecology and micro climate change especially rainfall.   The impact of these changes in other side can increasing the probability in occurrence of vector-born disease such as Aedes aegypti mosquito couse of Dengue Hemorrhagic Fever (DHF).   Besides of environmental factors, poverty level, rainfall, and housing conditions the suspected also affect the incidence of dengue.  This research aimed to determine of changes in forest cover and land, poverty level, and housing conditions as well as the impact to the incidence of dengue fever in Lampung. Data collected included primary data of land use changes of Lampung Province and the secondary  data  such  as  the  data  of  precipitation  rapid,  poverty  level,  healthy  house proportion and Incidence Rate of dengue.  The dynamic of changes in forest cover and landper distric/city identified through by Landsat image interpretation 5, 7 and 8  in 2002, 2009 and 2014.   While the impact on DHF analyzed using multiple linear models.   The results showed that there was a significant relationship between the changes of the people forest cover   -1,2634   (p=0,001),   intensive   agricultural   0,5315   (p=0,016),   the   number   of precipitation rapid 0,06869 (p=0,087) and the poverty level -0,2213 (p=0,038) and urbanism region in the towns and villages 28,75 (p=0,010) toward the incidence of dengue in Lampung from the year 2003 to 2014.  Based on the reseacrh result that the goverment should be able to increase the percentage of forest area cause able to decrease the incidence DHF. Keyword: forest conversion, incidence DHF, land use changes


2019 ◽  
Vol 8 (2) ◽  
pp. 118-131 ◽  
Author(s):  
T. V. Ramachandra ◽  
Bharath Setturu

The ecosystem of health and natural resource management is influenced by the social, political, economic system and institutional framework in a region. Rapid economic growth in Bangalore and its environs in recent decades has resulted in environmental changes in Bannerghatta National Park (BNP) and its buffer (of 5 km). Land use land cover (LULC) change analysis with a modelling technique such as cellular automata (CA)-Markov was used for quantitatively exploring forest cover transitions. The analysis of LULC dynamics has revealed loss of vegetation cover from 85.78 per cent to 66.37 per cent (1973–2015) and severe environmental stress. The region has lost moist deciduous cover, from 26.1 per cent to 13.8 per cent, and witnessed an increase in horticulture, from 8.5 per cent to 11 per cent (1973–2015). The visualization of likely land use in 2027 indicates the loss of forest cover from 41.38 per cent to 35.59 per cent with an increase in urban area from 4.49 per cent to 9.62 per cent (with new residential and commercial layouts in the buffer zone of BNP in violation of the eco-sensitive zone norms as per Section 5(1) of Environment Protection Act 1986). The study provides insights for developing an appropriate planning framework towards conservation and the sustainable management of ecologically sensitive national parks.


2021 ◽  
Vol 8 (6) ◽  
pp. 201855
Author(s):  
Alexandro Solórzano ◽  
Ana Brasil-Machado ◽  
Rogério Ribeiro de Oliveira

Historical ecology is an important tool in deciphering human–environment interactions imprinted on landscapes throughout time. However, gaps of knowledge still remain regarding the land use legacies hidden in the current Atlantic Forest landscape; and also regarding how this information can help management of the remaining forest cover. The social-ecological systems framework was applied to understand charcoal production in the urban forests of Rio de Janeiro, from the nineteenth to mid-twentieth century, and their current social-ecological legacies. Charcoal production carried out by former enslaved populations, allowed for rapid forest regeneration. Forest thinning instead of forest felling was carried out by small groups in these urban remnant forests, sparing large native trees and facilitating natural regeneration. Currently, more than one thousand former charcoal production sites are accounted for hidden underneath the forest cover. The forest landscape of today is a result of novel forest successional trajectories that recovered structural and functional attributes of the forest ecosystem. However, this came at the cost of social invisibility and marginalization of these populations. The management practices of charcoal production dispersed in the landscape is one of Rio de Janeiro's most important, albeit hidden, land use legacies. Currently, the forested landscape is comprised of regenerated forests, both structurally and functionally sound, though with significant changes in species composition including the introduction of exotic species throughout recent centuries. These urban forests are today a complex mosaic of novel ecosystems, with rich biocultural diversity, and together with managed lands and well conserved forest tracts, provide not only livelihood and sustenance for forest dwelling families, but also important ecosystem services for the entire population of Rio de Janeiro. We believe that these concepts and frameworks can offer practical solutions for urban forest management, taking into account the biocultural diversity of Rio de Janeiro, increasing awareness of sustainability and promoting food security.


2021 ◽  
Vol 3 ◽  
Author(s):  
Renato Oliveira da Silva-Júnior ◽  
Pedro Walfir Martins e Souza-Filho ◽  
Gabriel Negreiros Salomão ◽  
Alexandra Lima Tavares ◽  
Jorge Filipe dos Santos ◽  
...  

Impacts on global water resources may be intensifying due to the growing and differentiated forms of land use and occupation, which influence the water cycle and thus the maintenance of life. In the Amazon, the effect may be even worse, as it is one of the world's most vulnerable regions to these changes. This work aimed to analyze the response of the components of the water balance to changes in land use and cover in the Eastern Amazon over three decades (1980–2013). First, soil texture maps were prepared. These combined with the classes of use in each decade let us estimate the values of storage and variation in storage (ΔS) of water in the soil. The behavior of the components of the water balance [precipitation, potential evapotranspiration, actual evapotranspiration (E), and ΔS] were analyzed according to the Budyko model on the annual scale as a function of the aridity and evaporative indices. For the seasonal scale, a new parameter (y0) was introduced to explicitly represent the additional water available for E, in addition to instantaneous precipitation. The seasonality of the rains and the seasonal dynamics of storage were directly incorporated into the model developed, which allowed us to understand what the dominant control factors of water balance are. In the decade from 2000 to 2009, the remaining forest cover is only 48.91%, while the cover formed by pasture is 50.47%, meaning the water storage capacity in the soil decreased 8.1%. In the 1990s, to 1999, precipitation shows a reduction, probably as a reflection of the very strong events of La Niña and El Niño (1988–1989 and 1997–1998). Observing the sum of the surface area of water bodies in the region and the relationship of forest vs. pasture, it is possible to infer that the elevation in evapotranspiration is more related to the increase in evaporation due to the increase in the pasture area than to the reduction transpiration due to forest loss, reinforcing the hypothesis that evapotranspiration increases with pasture area.


2019 ◽  
Vol 5 (1) ◽  
pp. 108-117
Author(s):  
Solomon Jeremiah Sembosi

Rural settlements in mountainous regions are a typical process that occurs in many places around the world and have a number of implications on the landscape. Among them is a threat it possesses to the conservation and management of Afromontane ecosystems. This study assessed the socio-economic factors that drive the changes in land use and forest cover and the extent of land use and vegetation cover in and around Magamba Nature Reserve. Focus group discussion, direct field observation and household survey were used to acquire socio-economic information that impacts land use and forest cover. Through the use of Remote Sensing and GIS methods Landsat satellite images of 1995, 2008 and 2015 were employed to identify the extent of the changes in land use and forest cover. The perceived factors for the changes include education level, unemployment, landless/limited, landholding, population pressure, expansion of built-up areas and agricultural land at the expense of other land covers. This study revealed the transformation of natural forest and associated vegetation from one form to another. There was a decrease in natural vegetation from 61.06% in 1995 to 26.02% in 2015 and increase in built-up areas by 6.69% and agricultural areas by 4.70%. This study recommends conservation monitoring and strong law enforcement relating to natural resources so as to promote sustainable use of resources to rescue the diminishing ecosystem services.


2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


2021 ◽  
Author(s):  
Jennifer L. Williamson ◽  
Andrew Tye ◽  
Dan J. Lapworth ◽  
Don Monteith ◽  
Richard Sanders ◽  
...  

AbstractThe dissolved organic carbon (DOC) export from land to ocean via rivers is a significant term in the global C cycle, and has been modified in many areas by human activity. DOC exports from large global rivers are fairly well quantified, but those from smaller river systems, including those draining oceanic regions, are generally under-represented in global syntheses. Given that these regions typically have high runoff and high peat cover, they may exert a disproportionate influence on the global land–ocean DOC export. Here we describe a comprehensive new assessment of the annual riverine DOC export to estuaries across the island of Great Britain (GB), which spans the latitude range 50–60° N with strong spatial gradients of topography, soils, rainfall, land use and population density. DOC yields (export per unit area) were positively related to and best predicted by rainfall, peat extent and forest cover, but relatively insensitive to population density or agricultural development. Based on an empirical relationship with land use and rainfall we estimate that the DOC export from the GB land area to the freshwater-seawater interface was 1.15 Tg C year−1 in 2017. The average yield for GB rivers is 5.04 g C m−2 year−1, higher than most of the world’s major rivers, including those of the humid tropics and Arctic, supporting the conclusion that under-representation of smaller river systems draining peat-rich areas could lead to under-estimation of the global land–ocean DOC export. The main anthropogenic factor influencing the spatial distribution of GB DOC exports appears to be upland conifer plantation forestry, which is estimated to have raised the overall DOC export by 0.168 Tg C year−1. This is equivalent to 15% of the estimated current rate of net CO2 uptake by British forests. With the UK and many other countries seeking to expand plantation forest cover for climate change mitigation, this ‘leak in the ecosystem’ should be incorporated in future assessments of the CO2 sequestration potential of forest planting strategies.


2002 ◽  
Vol 46 (1) ◽  
Author(s):  
Dietrich Schmidt-Vogt

AbstractManagement of secondary tropical forests: a new perspective for sustainable use of forests in Asia. The decline of primary forests in the tropics is leading to a reassessment of the role secondary forests might play within the context of tropical forest management. Recent research has shown that secondary forests in the tropics can be both rich in species and complex in terms of stand structure. There is, moreover, a growing recognition of the importance of secondary forests for traditional subsistence economies in the tropics and of their economic potential for land use systems in the future. Management of secondary forests in Asia as an alternative to the extraction of timber from primary forests but also as one among other options to intensify traditional land use systems has a potential for the future especially because of the existence of vast tracts of valuable secondary forest cover, and because of the store of traditional knowledge that can still be found in tropical Asia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaëtane Le Provost ◽  
Jan Thiele ◽  
Catrin Westphal ◽  
Caterina Penone ◽  
Eric Allan ◽  
...  

AbstractLand-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Sign in / Sign up

Export Citation Format

Share Document