scholarly journals Ekstraksi Astaxanthin Kulit Udang (Litopenaeus vannamei) Pantai Gunung Kidul Menggunakan Pelarut Minyak Bunga Matahari dan Etanol

2021 ◽  
Vol 7 (1) ◽  
pp. 33-43
Author(s):  
Anik Prasetyaningsih ◽  
Graciela Carina Najoan ◽  
Abner Wisaksono ◽  
Djoko Rahardjo

ABSTRACT   As a maritime country with vast waters, Indonesia has many opportunities to utilize marine resources as a source of bioactive compounds that have the potential as active medicinal ingredients. One of the marine biotas that potentially contains the active compounds is the Vannamei shrimp's shell (Litopenaeus vannamei), which is commonly found as waste along the coast of Gunungkidul, Yogyakarta. The shrimp’s shell contains astaxanthin, a potential source of antioxidants for the health industry. The purpose of this study was to compare the astaxanthin extraction yield from L. vannamei shrimp shells using sunflower oil and 70% ethanol. The Astaxanthin extraction used sunflower oil and ethanol 70% as solvents and was done by maceration method, while the phytochemical test and Astaxanthin profiling used Thin Layer Chromatography and Spectrophotometer with Kelly and Harmon (1972) [5] calculations as well as pure Astaxanthin standards. The extraction yield of the 70% ethanol extraction was further processed by column chromatography using ether: ethanol (8: 2) as mobile phase. The highest Astaxanthin yield (220 mg / g of shrimp powder) was obtained from the extraction with sunflower oil compared to the 70% ethanol solvent, while the fractionation result with a chromatographic column from a crude extract of ethanol 70% showed high astaxanthin yield of 220.77 mg. / g fraction. The results of the fraction test on rat neutrophils, the best percentage reduction was at a concentration of 150 mg / g bw of rats.

Talanta ◽  
1992 ◽  
Vol 39 (8) ◽  
pp. 953-958 ◽  
Author(s):  
I POLITZER ◽  
K CRAGO ◽  
K AMOS ◽  
K MITCHELL ◽  
T HOLLIN

2006 ◽  
Vol 61 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tomasz Bączek ◽  
Barbara Sparzak

Abstract A novel analytical approach involving the addition of an ionic liquid into the mobile phase of the thin-layer chromatography (TLC) system during the optimization of chromatographic separation of peptides was demonstrated. Different behavior of peptides in the TLC sytem was observed after the addition of 1,3-dimethylimidazolium methyl sulfate to the eluent in comparison to the system without the ionic liquid. The objective of the work was to study the effect of the addition of different contents of ionic liquid to the mobile phase comprising mostly water and to observe the behavior of peptides’ retention. The potential usefulness of environmentally friendly ionic liquids for the optimization of separation of peptides was demonstrated. An increase of Rf values was observed with increasing the ionic liquid content in the mobile phase. The benefits of the used approach were related to the separation achieved. Finally, quantitative structure-retention relationships (QSRR) were used for the studies on the predictions of peptides’ retention in the TLC systems with the addition of ionic liquid in terms of the predictions performed recently in HPLC systems.


Author(s):  
Resmi Mustarichie ◽  
Danni Ramdhani ◽  
Wiwiek Indriyati

Objective:To determine forbidden (by law) pharmaceutical compounds in antirheumatic jamu.)Methods: Analysis of forbidden  pharmaceutical ingredients into jamu was carried out  by using the color reaction, thin layer chromatography and densitometry. Color reactions included organoleptic, solubility test and the color reaction, TLC using a stationary phase of silica gel GF 254 and a mobile phase of chloroform; acetone (80:20) was then measured with a densitometer.Results: Found from 7 herbal anti-rheumatic known in the market, three of which were synthetic compounds containing paracetamol and dexamethasone additions on one of them. Conclusion: There was a synthetic drug that was added to the herbal medicine namely jamu sold in the community The obtained results suggest that the authorities more intensively to monitor the manufacture and distribution of jamu and herbal medicines Keywords: AntirheumaticJamu, herbal medicine, TLC, Densitometer, paracetamol, dexamethasone 


2018 ◽  
Vol 1 (1) ◽  
pp. 264-270
Author(s):  
Hady Wiraputra ◽  
Marline Nainggolan ◽  
Panal Sitorus

Tanaman buni (Antidesma bunius (L.) Spreng.) secara tradisional telah digunakan untuk hipertensi, takikardia, anemia, sifilis, antikanker, antioksidan, sumber pewarna alami dan antidiabetes. Saponin merupakan senyawa fitokimia yang mempunyai kemampuan membentuk busa dan mengandung aglikon polisiklik yang berikatan dengan satu atau lebih gula. Penelitian ini bertujuan untuk melakukan karakterisasi senyawa saponin hasil isolasi dari daun buni dengan spektrofotometer ultraviolet dan inframerah. Simplisia daun buni dilakukan karakterisasi kemudian diekstraksi dengan cara maserasi bertingkat menggunakan pelarut n-heksana dan etanol 80%. Selanjutnya ekstrak etanol dihidrolisis dengan HCl 2N kemudian difraksi dengan pelarut kloroform. Isolasi dilakukan terhadap fraksi kloroform dengan cara kromatografi lapis tipis preparatif menggunakan fase diam silika gel GF254 dan fase gerak yang sesuai. Isolat yang diperoleh diuji kemurnian dengan KLT 2 arah dan dikarakterisasi menggunakan spektrofotometer ultraviolet dan inframerah. Hasil pemeriksaan karakterisasi simplisia diperoleh kadar air 7,32%, kadar sari larut dalam etanol 52,70%, kadar sari larut dalam air 23,25%, kadar abu total 6,86% dan kadar abu tidak larut dalam asam 0,94%. Pemisahan fraksi kloroform dengan KLT menggunakan fase gerak n-heksana-etilasetat perbandingan 5:5 diperoleh noda 13 dan hasil KLT preparatif diperoleh 2 isolat murni yaitu isolat 1 (ungu merah) dengan Rf 0,92 dan isolat 2 (biru) dengan Rf 0,78. Hasil karakterisasi isolat 1 diperoleh panjang gelombang maksimum pada 208 nm dan dijumpai adanya gugus hidroksil, gugus -CH alifatis, ikatan C=C, gugus –CH2, gugus –CH3, dan gugus C-O. Hasil karakterisasi isolat 2 diperoleh panjang gelombang maksimum pada 204 nm dan adanya gugus hidroksil, gugus -CH alifatis, gugus –CH2, gugus –CH3, dan gugus C-O. Buni (Antidesmabunius (L.) Spreng.) has been traditionally used for the treatment of hypertension, tachycardia, anemia, syphilis, and used asanti-cancer, anti-oxidant, natural dye, and anti-diabetic. Saponin is a phytochemical compound which has capability in forming foam and contains polycyclic aglycone that binds with one or more glucose. This research aimed to conduct the characterization of saponin compound from buni leaves with ultraviolet spectrophotometer and infrared. Buni leaves simplicia was characterizedand extracted using sequential maceration method with n-hexane and 80% ethanol. The ethanol extract was hydrolyzed with HCl 2N and fractionized using chloroform solvent. Isolation of chloroform fraction was done using preparative thin-layer chromatography using silent phase of silica gel GF 254 and suitable mobile phase. Isolates obtained was taken into purity test with two dimensions thin-layer chromatography and characterized using ultraviolet spectrophotometer and infrared. The characterized simplicia resulted with 7.32% of water content, 52.70% of dissolved content in ethanol, 23.25% of dissolvedcontent in water, 6.86% of total ash content, and 0.94% of undissolved ash content in acid. Fractinationof chloroform fraction with thin-layer chromatography using mobile phase ofn-hexane-ethyl acetate with 5:5 ration resulted with 13 spotsand the result of the preparative thin-layer chromatography resulted 2 pure isolates which are isolate 1 (purple-red) with Rf 0.92 and isolate 2 (blue) with Rf 0.78. The characterization of isolate 1 resulted that the maximum wave lengthwas 208 nm with hydroxyl group, –CH aliphatic group, C=C bond, –CH2 group, –CH3 group, and C–O group. The characterization of isolate 2 resulted that the maximum wave lengthwas204 nm with hydroxyl group, –CH aliphatic group, –CH2 group, –CH3 group, and C–O group.


2017 ◽  
Vol 1 (1) ◽  
pp. 85
Author(s):  
Eka Kumalasari

Crackers are made from tapioca flour batter mixed with flavorings and colorings, still many outstanding crackers that contain ingredients banned dye Rhodamine B. Rhodamine B is a chemical used for red dye in the textile industry and plastic. Rhodamine B can cause cancer, poisoning, lung irritation, sore eyes, and sore throat. This study aims to identify and determination the levels of Rhodamine B in circulating red crackers Antasari market Banjarmasin.The population is that sold in the red crackers that sold in Antasari market Banjarmasin.. The sampling is technique incidental sampling , that is based on chance, so any population by chance met with researchers can be used as a sample. Identification of Rhodamine B was done by Thin Layer Chromatography (TLC) by using the stationary phase silica GF 254 and mobile phase is elution solvent is n-butanol, ethyl acetate, ammonia (10:4:5). Then detected with a UV lamp 254 nm and 366 nm. While for the determination of levels using Vis spectrophotometry at a wavelength of 544 nm.The results showed that the samples of 6 found one sample containing Rhodamine B, namely samples 5 (cassava crackers matches) and obtained values of 7,25 ± 3,8640 levels mg / kg. Based on these results, Rhodamine B still found in crackers that sold in the market Antasari Banjarmasin.


Sign in / Sign up

Export Citation Format

Share Document