scholarly journals ECODRAINAGE SYSTEM EVALUATION AND CONTROL OF FLOODS IN JOMBANG DISTRICT, EAST JAVA

2021 ◽  
Vol 1 (2) ◽  
pp. 83
Author(s):  
Sri Rahmawati ◽  
Anita Rahmawati ◽  
Azizah Rachmawati

Jombang sub-district is the most densely populated sub-district because it is located in the middle of Jombang district and is also the center of government. Because it is a densely populated area, resulting in many changes in land use, green land for absorption has turned into a watertight area. The results of the analysis from this aspect indicate that several channels in Jombang District are not able to accommodate the design flood discharge. The calculation of the height of rain design in this study used the Log Person type III method with a return period of 5 years, which resulted in the design rainfall of 157 mm. The results of the analysis show that there are 8 channels out of 74 that are unable to accommodate the design flood discharge. After planning the infiltration wells, a different number was obtained for each road. For Jalan Sentot Prawirodirjo, there are 8 infiltration wells with a reduction power of 51.62%.

2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2018 ◽  
Vol 7 (1) ◽  
pp. 43-49
Author(s):  
Redaksi Tim Jurnal

The problem of flooding in DKI Jakarta is considered normal because almost every year can hit the city of Jakarta especially during the rainy season. In DKI Jakarta itself there are several rivers, one of which is Ciliwung River which is the most influential river in DKI Jakarta which often cause flood every year. The purpose of this research is to know the location of flood / river flood that occurs in the segments along Ciliwung River STA 7 + 646 s / d STA 15 + 049. Data processing begins with the calculation of average rainfall, frequency analysis, and then hour-time rain distribution. Method of calculation of flood discharge using the synthetic unit of Nakayasu and Gama I synthetic data. Rainfall data using 2 observation stations for 3 years rain (2014-2016). In the frequency analysis used Gumbel distribution berdasrkan test results suitability data Smirnov- Kolmogorov and Chi-Square. The result of flood peak discharge design with HSS Nakayasu on return period Q5 = 687,80 m3 / dt, Q10 = 743,21 m3 / dt, Q20 = 796,36 m3 / s, Q50 = 865,15 m3 / dt, Q100 = 916,71 m3 / s, while flood peak discharge design with HSS Gama I on return period Q5 = 347,03 m3 / s, Q10 = 372,12 m3 / s, Q20 = 396,20 m3 / s, Q50 = 427, 36 m3 / s, Q100 = 450,71 m3 / s. The design flood discharge value approaching the measured debit value is HSS Nakayasu. Steps continued using HEC-RAS 4.1.0 software to determine the capacity of river catchment by using Nakayasu discharge. After analyzing using the software, most stationing of the Ciliwung River at STA 7 + 646 to STA 15 + 049 can not accommodate the planned discharge during the 20th anniversary period, hence the need for river improvements in the form of river normalization and elevation of dikes.


2021 ◽  
Vol 945 (1) ◽  
pp. 012046
Author(s):  
Rizka Arbaningrum ◽  
Marelianda Al Dianty ◽  
Frederik Josef Putuhena ◽  
Rifki Priyambodo ◽  
Budianto Ontowirjo

Abstract Situ Ciledug is an artificial reservoir located at Tangerang Selatan, Indonesia. In 1950 known as one of the largest lakes with total area of 32.806 hectares. As time goes by, due to the construction of housing and land use around the area, the catcahment area was reduced about 19.3 hectares in 2013 and by the end of 2020 the surface area was become 16.2 hectares. Urbanization is the main factor that makes the area of Situ Ciledug’s narrower. The second impact was flooding, as a result, the flood inundates the cities around the reservoir. This study aims to increase the storage capacities by normalizing the reservoir using SWMM 5.1 software. Hydrological analysis was carried out in the first stage to find the maximum rainfall using a 100-year return period. Then result intensity of rainfall used to analyze the hyetograph as input for rainfall data in SWMM 5.1. The modeling uses a maximum of rainfall about 107 mm with a reservoir depth of 1.3 meters. The large inflow that enters the reservoir is 87.504 m3/second aand the volume is 30.145 m3/second. Therefore, it is necessary to normalize the reservoir by increasing the depth of the reservoir by 0.7 meters. Normalization is carried out to accommodate flood discharge as a solution to flood mitigation due to the overflow.


2020 ◽  
Vol 22 (2) ◽  
pp. 146-151
Author(s):  
Nadya Kintantrie Maulana ◽  
Yeri Sutopo

Abstract: Various kinds of buildings in civil engineering require careful planning. For example, in the planning of a water building needed a method to calculate the design flood discharge before starting to plan the dimensions of the building to meet the effectiveness of the water structure. Design flood discharge can be determined using several hydrograph methods that have been used in water building planning in Indonesia. One of the popular hydrograph method used is the Nakayasu Synthetic Unit Hydrograph method. In this case, the design flood discharge is located in the Garang watershed, precisely in Semarang City, province of Central Java, using rainfall data for the past 16 years. Hydrological analysis is carried out first before determining the design flood discharge with a return period of 2, 5, 10, 25, and 50 years. The results of the design flood discharge using Nakayasu method respectively were 305,522 m3/s, 390,742 m3/s, 447,783 m3/s, 520,560 m3/s, and 574,912 m3/s.


2015 ◽  
Vol 10 (2) ◽  
pp. 698-706
Author(s):  
Bagher Heidarpour ◽  
Bahram Saghafian ◽  
Saeed Golian

The term "outlier" is generally used to refer to single data points that appear to depart significantly from the trend of the other data. Outliers are classified into three types: incorrect observations, rare events resulting from essentially the same phenomena as the other maxima, and rare events resulting from a different phenomenon. Flood frequency analysis was first performed on complete data series (including the outlier) and then on the series with the outlier removed. Results revealed that omission of the outlier data didn’t affect the probability distribution function (Log-Pearson type III), but the design discharge reduced by 60 percent in 10000 year return period from 3320 (m3/s) to 1340 (m3/s). Furthermore, the method proposed by the U.S. Water Resources Council (WRC), and the HEC-SSP software were applied in order to compose outlier data with other systematic data and to modify the parameters of the statistical distribution. Using WRC method, the estimated 10000-year flood was equaled to 1907 (m3/s) by designating the outlier as the 200-year return period and revising the parameters of Log-Pearson type III distribution; that is about 43 percent decrease over the scenario involving the outlier.


Author(s):  
Matthias Jakob ◽  
Michael Porter ◽  
K. Wayne Savigny ◽  
Eugene Yaremko

Several hydrological methods are available to determine flood discharge and scour of streams at pipeline crossings. These methods are appropriate for streams dominated by purely hydrological processes, but fail where other, more hazardous processes occur within the design recurrence interval. Several investigations have shown that scour, impact and aggradation associated with debris flows, outburst floods or related phenomena may fundamentally change the parameters needed for proper pipeline crossing design. Depending on the process type, the peak discharge of the hazardous process can exceed that of the design flood (typically 50 to 200 year return period) by a factor of 2 to 50. Similarly, scour or aggradation by a non-fluvial process can exceed the hydrologically-derived estimates by several factors. It is therefore recommended that a geomorphic approach be taken in recognizing and quantifying the potential for non-fluvial processes and that the findings be integrated in the design of pipeline crossings.


2021 ◽  
Vol 004 (02) ◽  
pp. 127-140
Author(s):  
Putri Mayasari ◽  
Freddy Ilfan ◽  
Yasdi Yasdi ◽  
Rimba Rimba

Jambi River is one of the rivers located in the Muaro Jambi Temple Complex Area, Muaro Jambi Regency, Jambi Province. Muaro Jambi Temple is one of the tourist attractions in Jambi Province. This study aims to find the capacity of Jambi River tested by planned flood discharge utilizing (synthetic unit hydrograph) HSS Nakayasu method for a return period of two, five, ten, twenty-five, fifty and hundred years. HEC-RAS software used to analyse the water level in the Jambi River towards the flood potential that causes the submerging of the Kedaton Temple building. This research used the log Pearson type III method to calculate the planned rain return period and used the Nakayasu synthetic unit method to calculate the planned flood discharge. The analysis showed that the Jambi River could not load the flood discharge in the five, ten, twenty-five, fifty, and one hundred years return period at several measurement points: river sta-1, river sta-2 and river sta-5. The floodwater level did not cause the Kedaton Temple building to be flooded from the simulation result


2019 ◽  
Vol 21 (2) ◽  
pp. 70-75
Author(s):  
Cilcia Kusumastuti ◽  
Prasetio Sudjarwo ◽  
Marvin Christhie ◽  
Timotius Krisna

Design flood is one of the important factors for flood risk assessment and water infrastructures planning and development in a certain location. There are several methods to estimate it, one method which has been commonly and widely use is using flood frequency analysis. This research aims to develop Intensity-Duration-Frequency (IDF) curves in Upper Werba Sub-Watershed, West Papua Province, Indonesia, to estimate design rainfall intensity. The design rainfall intensity is used to estimate peak of flood discharge using Rational Formula in the sub-watershed. Other methods, i.e. Soil Conservation Service and Nakayasu Synthetic Unit Hydrograph are also presented in this paper to provide comparison of the estimated peak of flood discharge. The result shows that the Rational method provide the closest magnitude of estimated flood discharge in Upper Werba Sub-Watershed to the observed streamflow. Therefore, it is suggested that the Rational method can be used for water infrastructure planning and development in the sub-watershed.


CERUCUK ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 61
Author(s):  
Achmad Surian Nur ◽  
M. Azhari Noor

The policy of the Ministry of Energy and Mineral Resources that provides permits for mining production activities for PT. MCM in the Batang Alai River area has an impact on the hydrology of the area. This study will discuss the changes in land use in the Batang Alai River area, Batang Alai Timur District, Hulu Sungai Tengah to the aspects of high flow and low flow hydrology.          The research method used is manual calculation with rational methods for high flow hydrology and calculations using the ArcSWAT 2012.10.1.18 for low flow hydrology. The data needed in the processing are rainfall data, DEM data, daily discharge data, climatology data, land use data, land use change data, and Batang Alai watershed data.          The results of the study were that the ratio of peak discharge of land use was changed to the mining area and land use was not converted into a mining area for high flow hydrology calculations. There is an increase in plan flood discharge in the Batang Alai River if there is a change in land use into a mining area, the design flood discharge always increases in each period. Whereas for low flow hydrology is the comparison between the daily use of land use converted into a mining area and land use is not converted into a mining area, then the daily discharge results are calculated for the availability of water. The results of low-flow hydrological modeling are categorized as good and have high influence based on the Nash-Sutcliffe efficiency value grouping and the coefficient of determination, and water availability decreases if land use is converted into a mining area.


Sign in / Sign up

Export Citation Format

Share Document