scholarly journals Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand

2021 ◽  
Vol 51 ◽  
Author(s):  
Michael Marden ◽  
Suzanne Lambie ◽  
Larry Burrows

Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean basic stem-wood densities derived from a limited number of trees, often of unspecified age and from a limited number of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and national greenhouse gas accounting. We augment existing published basic stem-wood density data with new age-specific values for 12 indigenous forest and shrubland species, including rarely obtained values for trees <6-years old, across 21 widely-distributed sites between latitudes 35° and 46° S, and explore relationships commonly used to estimate carbon stocks. Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH). Unbalanced ANOVA was used to determine inter-species differences in basic stem-wood density in 5-yearly age groups (i.e. 0–5 years, 6–10 years etc.) (P<0.05). As specific taxa of Kunzea ericoides (Myrtaceae) has only been identified at some study sites we combine the data from each site, and use the term Kunzea spp. We compare our age- and species-specific results with existing published data where age is specified versus non-age-specific values. Results: Kunzea spp. and Leptospermum scoparium exhibited positive correlations between basic stem-wood density and tree height, RCD, and DBH. No relationships were established for Melicytus ramiflorus, Coprosma grandiflora, Weinmannia racemosa ?6-years old, or for Podocarpus totara, Agathis australis, Vitex lucens, and Alectryon excelsus <6-years old. Dacrydium cupressinum and Prumnopitys ferruginea <6-years old exhibited a significant positive relationship with DBH only, while for Dacrycarpus dacrydioides, each correlation was negative. Irrespective of age, basic stem-wood density is not different between the hardwood species L. scoparium and Kunzea spp. but is significantly greater (P=0.001) than that of the remaining, and predominantly softwood species of equivalent age. For Kunzea spp., L. scoparium, Coprosma grandiflora, Weinmannia racemosa, and Melicytus ramiflorus ?6-years old there was no evidence that basic stem-wood density increased with tree age, and values were within the range of published and unpublished data. For naturally reverting stands of Kunzea spp. located between latitudes 35° to 46° S, basic stem-wood density values tended to increase with decreased elevation and increased temperature. Conclusions: Increasing basic wood density values in Kunzea spp. with decreased elevation and increased temperature suggest that where local data are available its use would improve the accuracy of biomass estimates both locally and nationally. Furthermore, refining biomass estimates for existing communities of mixed softwood species, stands of regenerating shrubland, and new plantings of indigenous species will require additional basic stem-wood density values for scaling from stem wood volume to total stand biomass.

2021 ◽  
pp. 97-105

Background: The current challenge is to reduce the uncertainties in obtaining accurate and reliable data of carbon stock changes and emission factors essential for reporting national inventories. Improvements in above ground biomass estimation can also help account for changes in carbon stock in forest areas that may potentially participate in the Reducing emissions from deforestation and forest degradation and other initiatives. Current objectives for such estimates need a unified approach which can be measurable, reportable, and verifiable. This might result to a geographically referenced biomass density database for Sudanese forests that would reduce uncertainties in estimating forest aboveground biomass. The main objective: of this study is to assess potential of some selected forest variables for modeling carbon sequestration for Acacia seyal, vr. Seyal, Acacia seyal, vr. fistula, Acacia Senegal. The specific objectives include development of empirical allometric models for forest biomass estimation, estimation of carbon sequestration for these tree species, estimation of carbon sequestration per hectare and comparing the amount with that reported to the region. A total of 10 sample trees for biomass and carbon determination were selected for each of the three species from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components, and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results: presents biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. Conclusion: The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


1981 ◽  
Vol 57 (4) ◽  
pp. 169-173 ◽  
Author(s):  
I. S. Alemdag ◽  
K. W. Horton

Ovendry mass of single trees of trembling aspen, largetooth aspen, and white birch in the Great Lakes — St. Lawrence and Boreal forest regions in Ontario was studied in relation to stem dimensions. Mass equations for tree components based on diameter at breast height outside bark and tree height were developed. Results were found more dependable for stem wood and the whole tree than for stem bark, live branches, and twigs plus leaves. Ovendry mass values were slightly higher than those reported for New York and northern Minnesota.


2010 ◽  
Vol 34 (2) ◽  
pp. 84-90 ◽  
Author(s):  
Michael J. Aspinwall ◽  
Bailian Li ◽  
Steven E. McKeand ◽  
Fikret Isik ◽  
Marcia L. Gumpertz

Abstract Models were developed for predicting whole-stem α-cellulose yield, lignin content, and wood density in 14- and 20-year-old loblolly pine across three different sites. Also, the relationships between juvenile-, transition-, and mature-wood α-cellulose yield, lignin content, and wood density at breast-height and overall whole-stem wood property values were examined. Whole-stem wood property weighted averages were calculated by taking 12-mm core samples at breast height and at 2.4-m incremental heights up each tree, and breast-height wood property values were then used to predict whole-stem weighted averages. Despite large differences in growth across sites and both ages, whole-stem models based on whole cores taken at breast height were not significantly different among sites, and coefficients of determination (R2) were 0.87, 0.74, and 0.78 for α-cellulose, lignin, and wood density, respectively. Generally, whole-stem prediction models based on sections of wood at breast height were not significantly different among sites and were less effective than cores as predictors, explaining between 39 and 82% of the variation in whole-stem wood traits. The results of this study indicate that the relationship between breast height and whole-stem wood chemical properties (and density) is predictable and consistent across sites in both juvenile and mature loblolly pine.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 702 ◽  
Author(s):  
Jan Zörner ◽  
John Dymond ◽  
James Shepherd ◽  
Susan Wiser ◽  
Ben Jolly

Indigenous forests cover 23.9% of New Zealand’s land area and provide highly valued ecosystem services, including climate regulation, habitat for native biota, regulation of soil erosion and recreation. Despite their importance, information on the number of tall trees and the tree height distribution across different forest classes is scarce. We present the first region-wide spatial inventory of tall trees (>30 m) based on airborne LiDAR (Light Detection and Ranging) measurements in New Zealand—covering the Greater Wellington region. This region has 159,000 ha of indigenous forest, primarily on steep mountainous land. We implement a high-performance tree mapping algorithm that uses local maxima in a canopy height model (CHM) as initial tree locations and accurately identifies the tree top positions by combining a raster-based tree crown delineation approach with information from the digital surface and terrain models. Our algorithm includes a check and correction for over-estimated heights of trees on very steep terrain such as on cliff edges. The number of tall trees (>30 m) occurring in indigenous forest in the Wellington Region is estimated to be 286,041 (±1%) and the number of giant trees (>40 m tall) is estimated to be 7340 (±1%). Stereo-analysis of aerial photographs was used to determine the accuracy of the automated tree mapping. The giant trees are mainly in the beech-broadleaved-podocarp and broadleaved-podocarp forests, with density being 0.04 and 0.12 (trees per hectare) respectively. The inventory of tall trees in the Wellington Region established here improves the characterization of indigenous forests for management and provides a useful baseline for long-term monitoring of forest conditions. Our tree top detection scheme provides a simple and fast method to accurately map overstory trees in flat as well as mountainous areas and can be directly applied to improve existing and build new tree inventories in regions where LiDAR data is available.


1988 ◽  
Vol 18 (9) ◽  
pp. 1182-1185 ◽  
Author(s):  
Josefina S. Gonzalez ◽  
Jane Richards

Selection age for wood density in vigorous coastal Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) was determined by examining the following: strength of the correlation between total-stem wood density of 50-year-old trees and their breast-height density when the trees were 5 through 30 years old (breast-height age); efficiency in terms of gain per year of tree improvement effort by selecting at ages 5 through 30, relative to selecting at age 50. The linear regression and rank correlation between total-stem and breast-height densities improved as age increased from 5 to 15 years, but showed no significant improvement from 15 to 30 years. Densities of early-growth rings fluctuated considerably and their exclusion from the calculation of breast-height density enhanced the linear regression with total-stem density. Efficiency estimates in terms of gain per year showed an optimum value at age 15, but the estimates for ages 10–14 were nearly as efficient.


2019 ◽  
Vol 18 (2) ◽  
pp. 145-154
Author(s):  
Eka Fatmawati Tihurua ◽  
Endah Sulistyawati

Wood density is the functional character which has important role in the function of ecosystem. Stem and branch wood density have different trait and effect on its ecosystem processes. The objectives of this research are to know the diversity of stem and branch wood density and to analyze whether branch wood density could be used to estimate stem wood density in the Mount Papandayan. Six plots of 0.1 ha at different sites (three plots each in interior and edge forest) were established. Branches were collected from trees with diameter at breast height larger than 10 cm, while stem wood density data were obtained from some wood density sources. Research results showed that stem wood density ranges were 0.35–0.82 g/cm3, while branch wood density ranges were 0.33–0.61 g/cm3. Average of branch wood density was lower (0.48 ± 0.09 g/cm3) than stem wood density (0.61 ± 0.1 g/cm3). Linear regression analysis indicated that branch wood density could be used to estimate stem wood density of trees in Mount Papandayan which is showed by R2 value and correlation coefficient of 0.28 and 0.55 (p value < 0.001) respectively. 


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 201
Author(s):  
Lina Beniušienė ◽  
Edmundas Petrauskas ◽  
Marius Aleinikovas ◽  
Iveta Varnagirytė-Kabašinskienė ◽  
Ričardas Beniušis ◽  
...  

Background and Objectives: The study aimed to determine the changes of the main stem and branch parameters of Norway spruce (Picea abies (L.) H. Karst) trees under different stand densities. More specifically, the objective was to develop the models for the determination of branch diameter in 0–6 m log from root collar, taken as one of the parameters directly influencing the stem quality. The study continues a piece of research on stem and branch parameters’ responses to different stand density (SD) in the plantations of coniferous tree species in Lithuania. Materials and Methods: The following key parameters were measured in this study: total tree height, diameter at breast height, height to the lowest live branch, height to the lowest dead branch, and diameter of all branches in 0–6 m log. The linear regression models to predict branch diameter in 0–6 m log were developed based on stand density (SD), tree characteristics (tree diameter at breast height, DBH; and tree height, H) and other related stem and branch parameters. Results and Conclusions: Directly measured tree DBH, branch diameters and number of branches in 0–6 m log decreased significantly with the increasing SD. In the 0–6 m log, the branch diameter and the diameter of the thickest branch were identified as the main parameters related to stem quality. The best fitted models, developed including SD, tree DBH, branch diameter, and diameter of the thickest branch in 0–3 m log, can be proposed as a predictor for stem-wood quality for Norway spruce in hemiboreal forest zone.


2008 ◽  
Vol 38 (5) ◽  
pp. 1123-1132 ◽  
Author(s):  
Chhun-Huor Ung ◽  
Pierre Bernier ◽  
Xiao-Jing Guo

National allometric equations covering the most common tree species of Canada’s forests were produced based on tree mass data acquired in the early 1980s during the ENergy from the FORest (ENFOR) program. The equations allow us to calculate the mass estimate of four tree components (foliage, branches, stem bark, and stem wood) using either diameter at breast height or a combination of diameter at breast height and height. Missing from that data set, however, were the data from British Columbia. A usable British Columbia data set was finally found and has now been incorporated into the national data set. Here, we present revised allometric equations for six species covered in the previous work and also found in the British Columbia data set as well as for the “hardwoods”, “softwoods”, and “all species” equations. New equations are also provided for eight species specific to the British Columbia data.


2012 ◽  
Vol 487 ◽  
pp. 38-42
Author(s):  
Ming Yu Liu ◽  
Yin Bang Liu ◽  
Li Chun Jiang

Wood density was investigated in seven dahurian larch (Larix gmelinii Rupr.) trees grown in northeastern China. Six discs (about 5 cm thick) were cut from each tree (i.e. from the root stem, at breast height (1.3m), and at 20%, 40%, 60%, and 80% of the total height). For each disc, a thick sliver with parallel sides was cut out along the diameter of the disc. The sliver was about 40-mm thick, with the pith located in the middle. Eight small pieces were cut from the sliver with equal distance from pith to bark. Wood density of small piece was obtained using water displacement method. Significant variation in wood density was observed among sections for different heights. Wood density increases from pith to bark for all height categories and decreases from the stump to top of the tree height.


2021 ◽  
pp. 69-82

Improvements in above ground biomass estimation can help account for changes in carbon stock in forest areas that may potentially participate in the clean development mechanism. The main objective of this study was to assess potential of some selected forest variables for modeling carbon sequestration for Combretum hartmannianum, Terminalia brownii, and Lanea fruitcosa. A total of 10 sample trees for Lanea fruitcosa and 8 sample trees for each of the other two species were selected for biomass and carbon determination were selected from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally, allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results presented biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


Sign in / Sign up

Export Citation Format

Share Document