Quantification of small-scale heterogeneity in aquatic aminopeptidase activity

2020 ◽  
Vol 84 ◽  
pp. 127-140
Author(s):  
BM Gaas ◽  
JW Ammerman

Leucine aminopeptidase (LAP) is one of the enzymes involved in the hydrolysis of peptides, and is sometimes used to indicate potential nitrogen limitation in microbes. Small-scale variability has the potential to confound interpretation of underlying patterns in LAP activity in time or space. An automated flow-injection analysis instrument was used to address the small-scale variability of LAP activity within contiguous regions of the Hudson River plume (New Jersey, USA). LAP activity had a coefficient of variation (CV) of ca. 0.5 with occasional values above 1.0. The mean CVs for other biological parameters—chlorophyll fluorescence and nitrate concentration—were similar, and were much lower for salinity. LAP activity changed by an average of 35 nmol l-1 h-1 at different salinities, and variations in LAP activity were higher crossing region boundaries than within a region. Differences in LAP activity were ±100 nmol l-1 h-1 between sequential samples spaced <10 m apart. Variogram analysis indicated an inherent spatial variability of 52 nmol l-1 h-1 throughout the study area. Large changes in LAP activity were often associated with small changes in salinity and chlorophyll fluorescence, and were sensitive to the sampling frequency. This study concludes that LAP measurements in a sample could realistically be expected to range from zero to twice the average, and changes between areas or times should be at least 2-fold to have some degree of confidence that apparent patterns (or lack thereof) in activity are real.

1991 ◽  
Vol 58 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Teresa Requena ◽  
Carmen Peláez ◽  
Michel J. Desmazeaud

SummarySeveral strains ofLactococcus lactissubsp.lactis, Lactobacillus caseiandLactobacillus plantarumisolated from traditional goats' cheese have been studied for titratable acidity, proteolysis in milk and enzymic activities. Aminopeptidasc activities were measured with whole cells and cells permeabilized with Triton X-100. Caseinolytic activity was investigated using electrophoresis in polyacrylamide gel with sodium dodecyl sulphate.Lc. lactissubsp.lactishad a level of proteolytic activity in skim milk greater than that ofLb. casei, while this activity inLb. plantarumwas very low. Alanine aminopeptidase activity was almost non-existent for all strains tested, while lysine aminopeptidase activity appeared to be of fundamentally intracellular origin. Leucine aminopeptidase activity was also greater in cells that had been permeabilized than in whole cells forLb. caseiandLb. plantarum. Lc. lactissubsp.lactisleucine aminopeptidase activity was greater in whole cells. No significant hydrolysis of casein was found withLb. caseiI FPL 725 andLb. plantarumIFPL 722 permeabilized with Triton X-100 after 24 h incubation with whole bovine casein.


2001 ◽  
Vol 67 (11) ◽  
pp. 4955-4962 ◽  
Author(s):  
Jakob Worm ◽  
Ole Nybroe

ABSTRACT The objective of this study was to determine how an input of protein to lake water affects expression of a proteolytic potential and influences the abundance and composition of a specific group of bacteria. Pseudomonas spp. were chosen as a target group that can be recovered on selective growth media and contain both proteolytic and nonproteolytic strains. Amendment with 2 mg of casein per liter increased total proteinase activity (hydrolysis of [3H]casein) by 74%, leucine-aminopeptidase activity (hydrolysis of leucine-methyl-coumarinylamide) by 133%, bacterial abundance by 44%, and phytoplankton biomass (chlorophylla) by 39%. The casein amendment also increased the abundance of culturable Pseudomonas spp. by fivefold relative to control microcosms but did not select for proteolytic isolates. Soluble proteins immunochemically related to thePseudomonas fluorescens alkaline proteinase, AprX, were detected in amended microcosms but not in the controls. The expression of this class of proteinase was confirmed exclusively for proteolyticPseudomonas isolates from the microcosms. The population structure of Pseudomonas isolates was determined from genomic fingerprints generated by universally primed PCR, and the analysis indicated that casein amendment led to only minor shifts in population structure. The appearance of AprX-like proteinases in the lake water might thus reflect a general induction of enzyme expression rather than pronounced shifts in the Pseudomonaspopulation structure. The limited effect of casein amendment onPseudomonas population structure might be due to the availability of casein hydrolysates to bacteria independent of their proteinase expression. In the lake water, 44% of the total proteinase activity was recovered in 0.22-μm-pore-size filtrates and thus without a direct association with the bacteria providing the extracellular enzyme activity. Since all Pseudomonasisolates expressed leucine-aminopeptidase in pure culture, proteolytic as well as nonproteolytic pseudomonads were likely members of the bacterial consortium that metabolized protein in the lake water.


1954 ◽  
Vol 142 (907) ◽  
pp. 170-174 ◽  

We have undertaken the investigation of the nature of the intracellular peptidases and transpeptidases in the belief that the information will be pertinent to an understanding of the genetic behaviour and growth of an organism or, simply, the synthesis of protein. It cannot be argued that the peptidases and transpeptidases are responsible for all steps in protein synthesis; the participation of peptidases in the synthesis of peptides and proteins would require that energy be derived from coupled reactions. Nevertheless, it would seem obvious that the peptidases are concerned with the synthesis of protein; peptidase activity is greatest in rapidly growing tissue and may be correlated with the mitotic rate of various types of cells. In addition, it is easily demonstrated that the peptidases can, in the presence of a suitable linked source of energy, catalyze the formation of dipeptides. Energy mechanisms are required, but these energy mechanisms are probably coupled with exchange reactions of many different types and specificities; these specificities may well be furnished by the peptidases. Our studies have indicated that the peptidase activities of a cell are a property of the polynucleotides of the cell (Binkley 1952). In our studies of the hydrolysis of glutathione (Olson & Binkley 1950) it became necessary to study the hydrolysis of the cysteinylglycine. Our most highly purified preparations of the enzyme have been found to be non-specific in nature and to hydrolyze all dipeptides not having an amino-acid of the D-configuration as the initial amino-acid. Leucylglycine, a substrate for the so-called leucine aminopeptidase activity of cells, is easily prepared and is an excellent substrate for studies of the non-specific dipeptidase; this substrate has been used in all our more recent work.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ivana Sušanj ◽  
Nevenka Ožanić ◽  
Ivan Marović

In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.


Nature ◽  
1959 ◽  
Vol 183 (4653) ◽  
pp. 51-52 ◽  
Author(s):  
O. BRAUN-FALCO ◽  
K. SALFELD

1989 ◽  
Vol 111 (3) ◽  
pp. 466-478 ◽  
Author(s):  
A. E. Catania ◽  
A. Mittica

In addition to the frequently used statistical ensemble-average, non-Reynolds filtering operators have long been proposed for nonstationary turbulent quantities. Several techniques for the reduction of velocity data acquired in the cylinder of internal combustion reciprocating engines have been developed by various researchers in order to separate the “mean flow” from the “fluctuating motion,” cycle by cycle, and to analyze small-scale engine turbulence by statistical methods. Therefore a thorough examination of these techniques and a detailed comparison between them would seem to be a preliminary step in attempting a general study of unconventional averaging procedures for reciprocating engine flow application. To that end, in the present work, five different cycle-resolved data reduction methods and the conventional ensemble-average were applied to the same in-cylinder velocity data, so as to review and compare them. One of the methods was developed by the authors. The data were acquired in the cylinder of a direct-injection automotive diesel engine, during induction and compression strokes, using an advanced hot-wire anemometry technique. Correlation and spectral analysis of the engine turbulence, as determined from the data with the different procedures, were also performed.


2017 ◽  
Vol 47 (10) ◽  
pp. 2419-2427 ◽  
Author(s):  
Daniel B. Whitt ◽  
John R. Taylor

AbstractAtmospheric storms are an important driver of changes in upper-ocean stratification and small-scale (1–100 m) turbulence. Yet, the modifying effects of submesoscale (0.1–10 km) motions in the ocean mixed layer on stratification and small-scale turbulence during a storm are not well understood. Here, large-eddy simulations are used to study the coupled response of submesoscale and small-scale turbulence to the passage of an idealized autumn storm, with a wind stress representative of a storm observed in the North Atlantic above the Porcupine Abyssal Plain. Because of a relatively shallow mixed layer and a strong downfront wind, existing scaling theory predicts that submesoscales should be unable to restratify the mixed layer during the storm. In contrast, the simulations reveal a persistent and strong mean stratification in the mixed layer both during and after the storm. In addition, the mean dissipation rate remains elevated throughout the mixed layer during the storm, despite the strong mean stratification. These results are attributed to strong spatial variability in stratification and small-scale turbulence at the submesoscale and have important implications for sampling and modeling submesoscales and their effects on stratification and turbulence in the upper ocean.


1997 ◽  
Vol 119 (1) ◽  
pp. 57-60
Author(s):  
S. Qin ◽  
G. E. O. Widera

When performing inservice inspection on a large volume of identical components, it becomes an almost impossible task to inspect all those in which defects may exist, even if their failure probabilities are known. As a result, an appropriate sample size needs to be determined when setting up an inspection program. In this paper, a probabilistic analysis method is employed to solve this problem. It is assumed that the characteristic data of components has a certain distribution which can be taken as known when the mean and standard deviations of serviceable and defective sets of components are estimated. The sample size can then be determined within an acceptable assigned error range. In this way, both false rejection and acceptance can be avoided with a high degree of confidence.


Sign in / Sign up

Export Citation Format

Share Document