scholarly journals Analysing the risk of climate change using an irrigation demand model

2000 ◽  
Vol 14 ◽  
pp. 89-100 ◽  
Author(s):  
RN Jones
2021 ◽  
Author(s):  
Dolapo Enahoro ◽  
Jason Sircely ◽  
Randall B. Boone ◽  
Stephen Oloo ◽  
Adam M. Komarek ◽  
...  

The demand for livestock-derived foods has steadily grown over the past decades and rising incomes and human populations are expected to see demand further increase. It is unclear if current livestock feed resources are adequately prepared to meet future demand especially given the looming challenges of climate change. Many feeds such as grasses, crop by-products, and other biomass may not be widely grown commercially or sold in formal markets but are critical sources of livestock feed in many low-resource settings in which ruminant livestock production is important. The availability of these feed types can determine the extent to which the livestock sector can expand to meet growing, and sometimes critical, demand for animal-source foods. In this paper, we compare country-level projections of livestock demand from a global economic model to simulated data on feed biomass production. Our comparisons account separately for beef, lamb, and dairy demand. The data allow us to assess the future sufficiency of key sources of feed biomass, and hence aspects of the expansion capacity of livestock production in selected countries in Southern Africa. Our simulation results project that given the interacting effects of projected climate change and changes in income and population in the region, there will not be enough feed biomass produced domestically to meet growing demand for livestock products. For three types of feed biomass (feed crops including grains, grasses, and crop by-products) for which future livestock feed sufficiency was examined, our results showed feed sufficiency declines for all three feed types in Malawi and Mozambique, for two out of three in South Africa and for one of three in Zambia, under intermediate and extreme scenarios of climate change in 2050. Our results suggest an urgent need to improve feed biomass productivity to support future supply of animal protein in the study countries.


Author(s):  
Adrian Barker ◽  
Andrew Pitman ◽  
Jason P. Evans ◽  
Frank Spaninks ◽  
Luther Uthayakumaran

Abstract We examine the relative impact of population increases and climate change in affecting future water demand for Sydney, Australia. We use the Weather and Research Forecasting model, a water demand model and a stochastic weather generator to downscale four different global climate models for the present (1990–2010), near (2020–2040) and far (2060–2080) future. Projected climate change would increase median metered consumption, at 2019/2020 population levels, from around 484 GL under present climate to 484–494 GL under near future climate and 495–505 GL under far future climate. Population changes from 2014/2015 to 2024/2025 have a far larger impact, increasing median metered consumption from 457 to 508 GL under the present climate, 463 to 515 GL under near future climate and from 471 to 524 GL under far future climate. The projected changes in consumption are sensitive to the climate model used. Overall, while population growth is a far stronger driver of increasing water demand than climate change for Sydney, both act in parallel to reduce the time it would take for all storage to be exhausted. Failing to account for climate change would therefore lead to overconfidence in the reliability of Sydney's water supply.


Sensors ◽  
2007 ◽  
Vol 7 (10) ◽  
pp. 2297-2315 ◽  
Author(s):  
Tomohisa Yano ◽  
Mehmet Aydin ◽  
Tomokazu Haraguchi

Author(s):  
Zied Haj-Amor ◽  
Tapos Kumar Acharjee

Abstract Consideration of future change in water salinity is important for estimating irrigation demand in salinity-prone arid regions. Further, it is important to evaluate the contribution of irrigation efficiency enhancement to climate change resilience. Based on field measurements in 2019, a simulation approach from 2019 to 2050 was carried out in this study to investigate the impact of climate change and its consequences (i.e., change in water salinity) on the future gross irrigation demand of date palms and possible applied dose of water in a Tunisian oasis considering different irrigation efficiency enhancements. The estimation was done under very high (RCP 8.5), medium (RCP 6.0), and low (RCP 4.5) emission scenarios using the CROPWAT model. Results first showed an increase in gross irrigation requirement under inefficient surface irrigation (37% efficiency) from 3,340 mm year−1 in 2019 to 3,588–3,642 mm year−1 in 2050 for different climate change scenarios. This significant increase is mainly attributed to a significant change in climate variables and a high increase in water salinity. Second, considerable water savings (up to 1,980 mm) can be achieved if surface irrigation efficiency increases from the current value of 37–70%. Finally, much water can be saved only by reducing the overdose amount of water.


2020 ◽  
Vol 9 (9) ◽  
pp. 506
Author(s):  
Liping Wang ◽  
Shufang Wang ◽  
Liudong Zhang ◽  
Mohamed Khaled Salahou ◽  
Xiyun Jiao ◽  
...  

Studying the pattern of agricultural water demand under climate change has great significance for the regional water resources management, especially in arid areas. In this study, the future pattern of the irrigation demand in Hotan Oasis in Xinjiang Uygur Autonomous Region in Northwest China, including Hotan City, Hotan County, Moyu County and Luopu County, was assessed based on the general circulation models (GCMs) and the Surface Energy Balance System model (SEBS). Six different scenarios were used based on the GCMs of BCC_CSM1.1, HadGEM2-ES and MIROC-ESM-CHEM under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. The results showed that the method integrating the GCMs and SEBS to predict the spatial pattern was useful. The irrigation demand of Hotan Oasis will increase in 2021–2040. The annual irrigation demand of Hotan City is higher, with 923.2 and 936.2 mm/a in 2021–2030 and 2031–2040, respectively. The other three regions (Hotan County, Moyu County and Luopu County) are lower in the six scenarios. The annual irrigation demand showed a spatial pattern of high in the middle, low in the northwest and southeast under the six scenarios in 2021–2040. The study can provide useful suggestions on the water resources allocation in different regions to protect water resources security in arid areas.


1989 ◽  
Vol 3 (2) ◽  
pp. 155-163 ◽  
Author(s):  
B. S. Piper ◽  
C. Chawalit ◽  
V. Pantheep

2021 ◽  
Vol 13 (9) ◽  
pp. 5011
Author(s):  
Arifa Jannat ◽  
Yuki Ishikawa-Ishiwata ◽  
Jun Furuya

From the perspective of nutritional security, we investigated the influence of climate change on potato production in Bangladesh using a supply and demand model by considering the potato as an important non-cereal food crop. To provide an outlook on the variation in potato supplies and market prices under changing climatic factors (temperature, rainfall, and solar-radiation), the yield, area, import, and demand functions were assessed using district-level time-series data of Bangladesh (1988–2013), disaggregated into seven climatic zones. Results suggest that temperatures above or below the optimal range (18–22 °C) lowered yields. Little rainfall and low solar radiation hinder potato cultivation areas during the potato maturity stage. During the simulated period, the annual production was projected to rise from 88 to 111 million metric tons (MT), with an equilibrium farm price of 155 to 215 US dollars MT−1. Between 2014 and 2030, the nation’s per-capita potato intake is expected to increase from 49 to 55 kg year−1 because of changing dietary patterns. According to the estimated equilibrator, scenario simulations that incorporated various dimensions of Intergovernmental Panel on Climate Change (IPCC) scenarios indicate that potato production and consumption can increase in the future.


Sign in / Sign up

Export Citation Format

Share Document