Nutrient acquisition in four Mediterranean gorgonian species

2013 ◽  
Vol 473 ◽  
pp. 179-188 ◽  
Author(s):  
S Cocito ◽  
C Ferrier-Pagès ◽  
R Cupido ◽  
C Rottier ◽  
W Meier-Augenstein ◽  
...  
2014 ◽  
Vol 38 (1) ◽  
pp. 50-60 ◽  
Author(s):  
FRANÇOIS P. TESTE ◽  
ERIK J. VENEKLAAS ◽  
KINGSLEY W. DIXON ◽  
HANS LAMBERS

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Erin Treanore ◽  
Etya Amsalem

Abstract In the face of insect declines, identifying phases of the life cycle when insects are particularly vulnerable to mortality is critical to conservation efforts. For numerous annual insect groups, diapause is both a key adaptation that allows survival of inhospitable conditions and a physiologically demanding life stage that can result in high rates of mortality. As bees continue to garner attention as a group experiencing high rates of decline, improving our understanding of how annual bees prepare for diapause and identifying factors that reduce survival is imperative. Here, we studied factors affecting diapause survival length and their underlying mechanisms using an economically and ecologically important annual bee species, Bombus impatiens. We examined how age and mass upon diapause onset correlate with diapause survival length, and the mechanistic role of nutrient acquisition and oxidative stress post pupal eclosion in mediating these effects. Our findings show that both age and mass were strong predictors of diapause survival length. Heavier queens or queens in the age range of ~6–17 days survived longer in diapause. Mass gain was attributed to increases in lipid, protein and glycerol amounts following pupal eclosion, and the ability to deal with oxidative stress was significantly compromised in older pre-diapause queens. Our results demonstrate that age-related shifts in bee physiology and timing of nutrient acquisition may both be critical factors driving diapause survival.


2012 ◽  
Vol 9 (5) ◽  
pp. 1873-1884 ◽  
Author(s):  
G. M. Santos ◽  
A. Alexandre ◽  
J. R. Southon ◽  
K. K. Treseder ◽  
R. Corbineau ◽  
...  

Abstract. Plants absorb and transport silicon (Si) from soil, and precipitation of Si within the living plants results in micrometric amorphous biosilica particles known as phytoliths. During phytolith formation, a small amount of carbon (<2%) can become occluded in the silica structure (phytC) and therefore protected from degradation by the environment after plant tissue decomposition. Since the major C source within plants is from atmospheric carbon dioxide (CO2) via photosynthesis, the current understanding is that the radiocarbon (14C) content of phytC should reflect the 14C content of atmospheric CO2 at the time the plant is growing. This assumption was recently challenged by 14C data from phytoliths extracted from living grasses that yielded ages of several thousand years (2–8 kyr BP; in radiocarbon years "Before Present" (BP), "Present" being defined as 1950). Because plants can take up small amounts of C of varying ages from soils (e.g., during nutrient acquisition), we hypothesized that this transported C within the plant tissue could be attached to or even embedded in phytoliths. In this work, we explore this hypothesis by reviewing previously published data on biosilica mineralization and plant nutrient acquisition as well as by evaluating the efficiency of phytolith extraction protocols from scanning electron microscope (SEM) images and energy dispersive spectrometer (EDS) analyses from harvested grasses phytolith concentrates. We show that current extraction protocols are inefficient since they do not entirely remove recalcitrant forms of C from plant tissue. Consequently, material previously measured as "phytC" may contain at least some fraction of soil-derived C (likely radiocarbon-old) taken up by roots. We also suggest a novel interpretation for at least some of the phytC – which enters via the root pathway during nutrient acquisition – that may help to explain the old ages previously obtained from phytolith concentrates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongtao Jia ◽  
Ricardo F. H. Giehl ◽  
Nicolaus von Wirén

AbstractLateral roots (LRs) dominate the overall root surface of adult plants and are crucial for soil exploration and nutrient acquisition. When grown under mild nitrogen (N) deficiency, flowering plants develop longer LRs to enhance nutrient acquisition. This response is partly mediated by brassinosteroids (BR) and yet unknown mechanisms. Here, we show that local auxin biosynthesis modulates LR elongation while allelic coding variants of YUCCA8 determine the extent of elongation under N deficiency. By up-regulating the expression of YUCCA8/3/5/7 and of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) under mild N deficiency auxin accumulation increases in LR tips. We further demonstrate that N-dependent auxin biosynthesis in LRs acts epistatic to and downstream of a canonical BR signaling cascade. The uncovered BR-auxin hormonal module and its allelic variants emphasize the importance of fine-tuning hormonal crosstalk to boost adaptive root responses to N availability and offer a path to improve soil exploration by expanded root systems in plants.


Sign in / Sign up

Export Citation Format

Share Document