scholarly journals A Monte Carlo Simulation-Based Approach to Solve Dynamic Sectorization Problem

Author(s):  
Aydin Teymourifar ◽  
Ana Maria Rodrigues ◽  
José Soeiro Ferreira

In this study, two novel stochastic models are introduced to solve the dynamic sectorization problem, in which sectors are created by assigning points to service centres. The objective function of the first model is defined based on the equilibration of the distance in the sectors, while in the second one, it is based on the equilibration of the demands of the sectors. Both models impose constraints on assignments and compactness of sectors. In the problem, the coordinates of the points and their demand change over time, hence it is called a dynamic problem. A new solution method is used to solve the models, in which expected values of the coordinates of the points and their demand are assessed by using the Monte Carlo simulation. Thus, the problem is converted into a deterministic one. The linear and deterministic type of the model, which is originally non-linear is implemented in Python's Pulp library and in this way the generated benchmarks are solved. Information about how benchmarks are derived and the obtained solutions are presented.

2020 ◽  
Vol 68 (6) ◽  
pp. 1896-1912
Author(s):  
Yijie Peng ◽  
Michael C. Fu ◽  
Bernd Heidergott ◽  
Henry Lam

A Simulation-Based Approach for Calibrating Stochastic Models


2021 ◽  
Vol 50 ◽  
pp. 101301
Author(s):  
A.Z. Zheng ◽  
S.J. Bian ◽  
E. Chaudhry ◽  
J. Chang ◽  
H. Haron ◽  
...  

2007 ◽  
Vol 129 ◽  
pp. 83-87
Author(s):  
Hua Long Li ◽  
Jong Tae Park ◽  
Jerzy A. Szpunar

Controlling texture and microstructure evolution during annealing processes is very important for optimizing properties of steels. Theories used to explain annealing processes are complicated and always case dependent. An recently developed Monte Carlo simulation based model offers an effective tool for studying annealing process and can be used to verify the arbitrarily defined theories that govern such processes. The computer model takes Orientation Image Microscope (OIM) measurements as an input. The abundant information contained in OIM measurement allows the computer model to incorporate many structural characteristics of polycrystalline materials such as, texture, grain boundary character, grain shape and size, phase composition, chemical composition, stored elastic energy, and the residual stress. The outputs include various texture functions, grain boundary and grain size statistics that can be verified by experimental results. Graphical representation allows us to perform virtual experiments to monitor each step of the structural transformation. An example of applying this simulation to Si steel is given.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
A. J. Marston ◽  
K. J. Daun ◽  
M. R. Collins

This paper presents an optimization algorithm for designing linear concentrating solar collectors using stochastic programming. A Monte Carlo technique is used to quantify the performance of the collector design in terms of an objective function, which is then minimized using a modified Kiefer–Wolfowitz algorithm that uses sample size and step size controls. This process is more efficient than traditional “trial-and-error” methods and can be applied more generally than techniques based on geometric optics. The method is validated through application to the design of three different configurations of linear concentrating collector.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2881
Author(s):  
Muath Alrammal ◽  
Munir Naveed ◽  
Georgios Tsaramirsis

The use of innovative and sophisticated malware definitions poses a serious threat to computer-based information systems. Such malware is adaptive to the existing security solutions and often works without detection. Once malware completes its malicious activity, it self-destructs and leaves no obvious signature for detection and forensic purposes. The detection of such sophisticated malware is very challenging and a non-trivial task because of the malware’s new patterns of exploiting vulnerabilities. Any security solutions require an equal level of sophistication to counter such attacks. In this paper, a novel reinforcement model based on Monte-Carlo simulation called eRBCM is explored to develop a security solution that can detect new and sophisticated network malware definitions. The new model is trained on several kinds of malware and can generalize the malware detection functionality. The model is evaluated using a benchmark set of malware. The results prove that eRBCM can identify a variety of malware with immense accuracy.


Sign in / Sign up

Export Citation Format

Share Document