scholarly journals Glucose release as a response to glucagon in rat hepatocyte culture: involvement of NO signaling

2008 ◽  
pp. 569-575
Author(s):  
H Farghali ◽  
J Hodis ◽  
N Kutinová-Canová ◽  
P Potměšil ◽  
E Kmoníčková ◽  
...  

Glucagon and α-adrenergic-induced glycogenolysis is realized via the agonist/adenylyl cyclase/cAMP/protein kinase signaling pathway or via the activation of phosphorylase kinase by the mobilized calcium that supports the inhibition of glycogen synthase, respectively. The role of nitric oxide (NO) in this process has not been extensively studied. The present work was directed to the question whether NO is produced during glucagon-induced glycogenolysis in rat hepatocyte in a similar way like α-adrenoceptor stimulation. Glycogen-rich hepatocyte cultures were used. NO production (NO2-) was assessed under the influence of glucagon, dibutyryl cyclic AMP (db-cAMP), forskolin, the nitric oxide synthase (NOS) inhibitors Nω-nitro-Larginine methyl ester (L-NAME) and aminoguanidine, and the NO donor S-nitroso-N-acetyl penicillamine (SNAP). Inducible NOS (iNOS) mRNA was examined by reverse transcription-polymerase chain reaction. Glycogenolysis was followed up by estimation of medium glucose levels. The amount of glucose and NO2 - released by glycogen-rich hepatocytes was increased as a result of glucagon, db-cAMP, forskolin and SNAP treatments. iNOS gene expression was upregulated by glucagon. Glycogenolysis that occurs through glucagon receptor stimulation involves NO production downstream of transduction pathways through an isoform of NO synthase. The present and previous studies document possible involvement of NO signaling in glycogenolytic response to glucagon and adrenergic agonists in hepatocytes.


Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5228-5235 ◽  
Author(s):  
Maya Rosiansky-Sultan ◽  
Eyal Klipper ◽  
Katharina Spanel-Borowski ◽  
Rina Meidan

Endothelin-1 (ET-1) and nitric oxide (NO) play pivotal roles in corpus luteum (CL) function. The present study examined the interplay between NO and ET-1 synthesis in the bovine CL. We found similar inducible and endothelial NO synthase (iNOS and eNOS, respectively) activities in the young CL (d 1–5) expressing the highest levels of both eNOS and iNOS mRNA. These values later declined at mid-cycle (d 8–15) and remained low at later stages (d 16–18). Luteolysis, initiated by prostaglandin F2α analog administration, further reduced NOS mRNA and by 24 h, NOS values dropped to approximately 15% of those at mid-cycle. eNOS protein levels followed a similar pattern to its mRNA. Because endothelial cells (ECs) are the main site for ET-1 and NO production in the CL, we examined the direct effects of the NO donor, NONOate on luteal ECs (LECs). Elevated NO levels markedly decreased ET-1 mRNA, and peptide concentrations in cultured and freshly isolated LECs in a dose-dependent manner. In agreement, NOS inhibitor, NG-nitro-l-arginine methyl ester, stimulated ET-1 mRNA expression in these cells. Interestingly, NO also up-regulated prostaglandin F2α receptors in LECs. These data show that there is an inverse relationship between NOS and ET-1 throughout the CL life span, and imply that this pattern may be the result of their interaction within the resident LECs. NOS are expressed in a physiologically relevant manner: elevated NO at an early luteal stage is likely to play an important role in angiogenesis, whereas reduced levels of NO during luteal regression may facilitate the sustained up-regulation of ET-1 levels during luteolysis.



2020 ◽  
Author(s):  
Lilian J. Hill ◽  
Leonardo T. Salgado ◽  
Paulo S. Salomon ◽  
Annika Guse

AbstractCoral reef ecosystems depend on a functional symbiosis between corals and photosynthetic dinoflagellate symbionts (Symbiodiniaceae), which reside inside the coral cells. Symbionts transfer nutrients essential for the corals’ survival, and loss of symbionts (‘coral bleaching’) can result in coral death. Temperature stress is one factor that can induce bleaching and is associated with the molecule nitric oxide (NO). Likewise, symbiont acquisition by aposymbiotic hosts is sensitive to elevated temperatures, but to date the role of NO signaling in symbiosis establishment is unknown. To address this, we use symbiosis establishment assays in aposymbiotic larvae of the anemone model Exaiptasia pallida (Aiptasia). We show that elevated temperature (32°C) enhances NO production in cultured symbionts but not in aposymbiotic larvae. Additionally, we find that symbiosis establishment is impaired at 32°C, and this same impairment is observed at control temperature (26°C) in the presence of a specific NO donor (GSNO). Conversely, the specific NO scavenger (cPTIO) restores symbiosis establishment at 32°C; however, reduction in NO levels at 26°C reduces the efficiency of symbiont acquisition. Our findings indicate that explicit NO levels are crucial for symbiosis establishment, highlighting the complexity of molecular signaling between partners and the adverse implications of temperature stress on coral reefs.



2007 ◽  
pp. 419-426
Author(s):  
J Hodis ◽  
N Kutinová-Canová ◽  
P Potměšil ◽  
L Kameníková ◽  
E Kmoníčková ◽  
...  

Certain liver metabolic diseases point to the presence of disturbances in glycogen deposition. Epinephrine raises the cAMP level that activates protein kinase A leading to the activation of phosphorylase and glycogen breakdown. In the present report, we sought to investigate whether NO is produced during adrenoceptor agonist-induced glycogenolysis in rat hepatocytes in cultures. Isolated glycogen rich rat hepatocytes in cultures were used. NO production (NO(2)(-)) was assessed under the effect of adrenergic agonists and adrenergic agonist/antagonist pairs, dibutyryl cyclic AMP sodium-potassium salt (db-cAMP), NO synthase (NOS) inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP). The inducible NO synthase (iNOS) mRNA was examined by the reverse transcription-polymerase chain reaction (RT-PCR). Glycogenolysis was quantified by glucose levels released into medium. The amount of glucose and NO(2)(-) released by hepatocytes was increased as a result of epinephrine, phenylephrine or db-cAMP treatments. The increase in glucose and NO(2)(-) released by epinephrine or phenylephrine was blocked or reduced by prazosin pretreatment and by NOS inhibitors aminoguanidine and L-NAME. iNOS gene expression was up-regulated by epinephrine. It can be concluded that glycogenolysis occurs through -adrenoceptor stimulation and a signaling cascade may involve NO production.



2002 ◽  
Vol 283 (1) ◽  
pp. C296-C304 ◽  
Author(s):  
Ragnar Henningsson ◽  
Albert Salehi ◽  
Ingmar Lundquist

The role of islet constitutive nitric oxide synthase (cNOS) in insulin-releasing mechanisms is controversial. By measuring enzyme activities and protein expression of NOS isoforms [i.e., cNOS and inducible NOS (iNOS)] in islets of Langerhans cells in relation to insulin secretion, we show that glucose dose-dependently stimulates islet activities of both cNOS and iNOS, that cNOS-derived nitric oxide (NO) strongly inhibits glucose-stimulated insulin release, and that short-term hyperglycemia in mice induces islet iNOS activity. Moreover, addition of NO gas or an NO donor inhibited glucose-stimulated insulin release, and different NOS inhibitors effected a potentiation. These effects were evident also in K+-depolarized islets in the presence of the ATP-sensitive K+ channel opener diazoxide. Furthermore, our results emphasize the necessity of measuring islet NOS activity when using NOS inhibitors, because certain concentrations of certain NOS inhibitors might unexpectedly stimulate islet NO production. This is shown by the observation that 0.5 mmol/l of the NOS inhibitor N G-monomethyl-l-arginine (l-NMMA) stimulated cNOS activity in parallel with an inhibition of the first phase of glucose-stimulated insulin release in perifused rats islets, whereas 5.0 mmol/l of l-NMMA markedly suppressed cNOS activity concomitant with a great potentiation of the insulin secretory response. The data strongly suggest, but do not definitely prove, that glucose indeed has the ability to stimulate both cNOS and iNOS in the islets and that NO might serve as a negative feedback inhibitor of glucose-stimulated insulin release. The results also suggest that hyperglycemia-evoked islet NOS activity might be one of multiple factors involved in the impairment of glucose-stimulated insulin release in type II diabetes mellitus.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.



1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.



2007 ◽  
Vol 292 (4) ◽  
pp. H1995-H2003 ◽  
Author(s):  
Zuo-Hui Shao ◽  
Wei-Tien Chang ◽  
Kim Chai Chan ◽  
Kim R. Wojcik ◽  
Chin-Wang Hsu ◽  
...  

Optimal timing of therapeutic hypothermia for cardiac ischemia is unknown. Our prior work suggests that ischemia with rapid reperfusion (I/R) in cardiomyocytes can be more damaging than prolonged ischemia alone. Also, these cardiomyocytes demonstrate protein kinase C (PKC) activation and nitric oxide (NO) signaling that confer protection against I/R injury. Thus we hypothesized that hypothermia will protect most using extended ischemia and early reperfusion cooling and is mediated via PKC and NO synthase (NOS). Chick cardiomyocytes were exposed to an established model of 1-h ischemia/3-h reperfusion, and the same field of initially contracting cells was monitored for viability and NO generation. Normothermic I/R resulted in 49.7 ± 3.4% cell death. Hypothermia induction to 25°C was most protective (14.3 ± 0.6% death, P < 0.001 vs. I/R control) when instituted during extended ischemia and early reperfusion, compared with induction after reperfusion (22.4 ± 2.9% death). Protection was completely lost if onset of cooling was delayed by 15 min of reperfusion (45.0 ± 8.2% death). Extended ischemia/early reperfusion cooling was associated with increased and sustained NO generation at reperfusion and decreased caspase-3 activation. The NOS inhibitor Nω-nitro-l-arginine methyl ester (200 μM) reversed these changes and abrogated hypothermia protection. In addition, the PKCε inhibitor myr-PKCε v1-2 (5 μM) also reversed NO production and hypothermia protection. In conclusion, therapeutic hypothermia initiated during extended ischemia/early reperfusion optimally protects cardiomyocytes from I/R injury. Such protection appears to be mediated by increased NO generation via activation of protein kinase Cε; nitric oxide synthase.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ping-Ho Chen ◽  
Yaw-Syan Fu ◽  
Yun-Ming Wang ◽  
Kun-Han Yang ◽  
Danny Ling Wang ◽  
...  

Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid methyl ester (FA-OMe), and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK), and protein kinase B (Akt). By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN) with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.



2013 ◽  
Vol 210 (7) ◽  
pp. 1433-1445 ◽  
Author(s):  
Nataša Obermajer ◽  
Jeffrey L. Wong ◽  
Robert P. Edwards ◽  
Kong Chen ◽  
Melanie Scott ◽  
...  

Nitric oxide (NO) is a ubiquitous mediator of inflammation and immunity, involved in the pathogenesis and control of infectious diseases, autoimmunity, and cancer. We observed that the expression of nitric oxide synthase-2 (NOS2/iNOS) positively correlates with Th17 responses in patients with ovarian cancer (OvCa). Although high concentrations of exogenous NO indiscriminately suppress the proliferation and differentiation of Th1, Th2, and Th17 cells, the physiological NO concentrations produced by patients’ myeloid-derived suppressor cells (MDSCs) support the development of RORγt(Rorc)+IL-23R+IL-17+ Th17 cells. Moreover, the development of Th17 cells from naive-, memory-, or tumor-infiltrating CD4+ T cells, driven by IL-1β/IL-6/IL-23/NO-producing MDSCs or by recombinant cytokines (IL-1β/IL-6/IL-23), is associated with the induction of endogenous NOS2 and NO production, and critically depends on NOS2 activity and the canonical cyclic guanosine monophosphate (cGMP)–cGMP-dependent protein kinase (cGK) pathway of NO signaling within CD4+ T cells. Inhibition of NOS2 or cGMP–cGK signaling abolishes the de novo induction of Th17 cells and selectively suppresses IL-17 production by established Th17 cells isolated from OvCa patients. Our data indicate that, apart from its previously recognized role as an effector mediator of Th17-associated inflammation, NO is also critically required for the induction and stability of human Th17 responses, providing new targets to manipulate Th17 responses in cancer, autoimmunity, and inflammatory diseases.



2007 ◽  
Vol 293 (5) ◽  
pp. L1261-L1270 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Mark R. Girton ◽  
Matthew J. Metropoulus ◽  
Mandar S. Joshi ◽  
...  

Nitric oxide (NO) is an important regulator of vasomotor tone in the pulmonary circulation. We tested the hypothesis that the role NO plays in regulating vascular tone changes during early postnatal development. Isolated, perfused lungs from 7- and 14-day-old Sprague-Dawley rats were studied. Baseline total pulmonary vascular resistance (PVR) was not different between age groups. The addition of KCl to the perfusate caused a concentration-dependent increase in PVR that did not differ between age groups. However, the nitric oxide synthase (NOS) inhibitor Nω-nitro-l-arginine augmented the K+-induced increase in PVR in both groups, and the effect was greater in lungs from 14-day-old rats vs. 7-day-old rats. Lung levels of total endothelial, inducible, and neuronal NOS proteins were not different between groups; however, the production rate of exhaled NO was greater in lungs from 14-day-old rats compared with those of 7-day-old rats. Vasodilation to 0.1 μM of the NO donor spermine NONOate was greater in 14-day lungs than in 7-day lungs, and lung levels of both soluble guanylyl cyclase and cGMP were greater at 14 days than at 7 days. Vasodilation to 100 μM of the cGMP analog 8-(4-chlorophenylthio)guanosine-3′,5′-cyclic monophosphate was greater in 7-day lungs than in 14-day lungs. Our results demonstrate that the pulmonary vascular bed depends more on NO production to modulate vascular tone at 14 days than at 7 days of age. The observed differences in NO sensitivity may be due to maturational increases in soluble guanylyl cyclase protein levels.



Sign in / Sign up

Export Citation Format

Share Document