scholarly journals Autocrine Effects of Visfatin on Hepatocyte Sensitivity to Insulin Action

2010 ◽  
pp. 615-618 ◽  
Author(s):  
V Škop ◽  
K Kontrová ◽  
V Zídek ◽  
M Pravenec ◽  
L Kazdová ◽  
...  

Visfatin was originally described as an adipokine with insulin mimetic effects. Recently, it was found that visfatin is identical with the Nampt (nicotinamide phosphoribosyltransferase) gene that codes for an intra- and extracellular NAD biosynthetic enzyme and is predominantly expressed outside the adipose tissue. In the current study, we found strong protein and mRNA expression of visfatin in rat heart, liver, kidney, and muscle, while the expression of visfatin in visceral fat was significantly lower and undetectable in subcutaneous fat. The insulin-mimetic effects of visfatin (extracellular form of Nampt or eNampt) are controversial and even less is known about autocrine effects of visfatin (intracellular form of Nampt or iNampt). Since liver plays a major role in glucose metabolism, we studied visfatin effects on insulin-stimulated cellular glucose uptake in Fao rat hepatocytes using RNA interference (RNAi). RNAi-mediated downregulation of visfatin expression in Fao cells was associated with significantly reduced NAD biosynthesis (0.3±0.01 vs. 0.5±0.01 mmol/h/g, P<0.05) and with significantly decreased incremental glucose uptake after stimulation with insulin when compared to controls with normal expression of visfatin (0.6±0.2 vs. 2.2±0.5 nnmol/g/2 h, P=0.02). These results provide evidence that visfatin exhibits important autocrine effects on sensitivity of liver cells to insulin action possibly through its effects on NAD biosynthesis.

2008 ◽  
Vol 294 (1) ◽  
pp. E97-E102 ◽  
Author(s):  
Audrey E. Brown ◽  
Matthias Elstner ◽  
Stephen J. Yeaman ◽  
Douglass M. Turnbull ◽  
Mark Walker

Insulin-resistant type 2 diabetic patients have been reported to have impaired skeletal muscle mitochondrial respiratory function. A key question is whether decreased mitochondrial respiration contributes directly to the decreased insulin action. To address this, a model of impaired cellular respiratory function was established by incubating human skeletal muscle cell cultures with the mitochondrial inhibitor sodium azide and examining the effects on insulin action. Incubation of human skeletal muscle cells with 50 and 75 μM azide resulted in 48 ± 3% and 56 ± 1% decreases, respectively, in respiration compared with untreated cells mimicking the level of impairment seen in type 2 diabetes. Under conditions of decreased respiratory chain function, insulin-independent (basal) glucose uptake was significantly increased. Basal glucose uptake was 325 ± 39 pmol/min/mg (mean ± SE) in untreated cells. This increased to 669 ± 69 and 823 ± 83 pmol/min/mg in cells treated with 50 and 75 μM azide, respectively (vs. untreated, both P < 0.0001). Azide treatment was also accompanied by an increase in basal glycogen synthesis and phosphorylation of AMP-activated protein kinase. However, there was no decrease in glucose uptake following insulin exposure, and insulin-stimulated phosphorylation of Akt was normal under these conditions. GLUT1 mRNA expression remained unchanged, whereas GLUT4 mRNA expression increased following azide treatment. In conclusion, under conditions of impaired mitochondrial respiration there was no evidence of impaired insulin signaling or glucose uptake following insulin exposure in this model system.


1989 ◽  
Vol 66 (2) ◽  
pp. 695-703 ◽  
Author(s):  
K. J. Mikines ◽  
B. Sonne ◽  
P. A. Farrell ◽  
B. Tronier ◽  
H. Galbo

Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
pp. 511-519 ◽  
Author(s):  
G. G. SCHWEITZER ◽  
C. M. CASTORENA ◽  
T. HAMADA ◽  
K. FUNAI ◽  
E. B. ARIAS ◽  
...  

Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin’s relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [3H]-2-deoxyglucose ±insulin (60 or 100 μU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 μU/ml insulin (P=0.166) and was significantly greater for muscles with 100 μU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (~14 %) and insulin (~55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 μU/ml insulin (P=0.063) and was significantly greater for muscles with 100 μU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.


2020 ◽  
Author(s):  
Ada Admin ◽  
Solvejg L. Hansen ◽  
Kirstine N. Bojsen-Møller ◽  
Anne-Marie Lundsgaard ◽  
Frederikke L. Hendrich ◽  
...  

Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle improving glucose uptake and metabolism in both healthy and type 2 diabetic individuals. In the present study, lean, hyperandrogenic women with PCOS (n=9) and healthy controls (CON, n=9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole body insulin action by 26% and insulin-stimulated leg glucose uptake by 53%, together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in maximal oxygen uptake. In skeletal muscle of CON, but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose handling proteins for insulin-stimulated glucose uptake in skeletal muscle, and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.


2009 ◽  
Vol 296 (4) ◽  
pp. E787-E795 ◽  
Author(s):  
Christian Frøsig ◽  
Carsten Roepstorff ◽  
Nina Brandt ◽  
Stine J. Maarbjerg ◽  
Jesper B. Birk ◽  
...  

This study evaluated whether improved insulin-stimulated glucose uptake in recovery from acute exercise coincides with reduced malonyl-CoA (MCoA) content in human muscle. Furthermore, we investigated whether a high-fat diet [65 energy-% (Fat)] would alter the content of MCoA and insulin action compared with a high-carbohydrate diet [65 energy-% (CHO)]. After 4 days of isocaloric diet on two occasions (Fat/CHO), 12 male subjects performed 1 h of one-legged knee extensor exercise (∼80% peak workload). Four hours after exercise, insulin-stimulated glucose uptake was determined in both legs during a euglycemic-hyperinsulinemic clamp. Muscle biopsies were obtained in both legs before and after the clamp. Four hours after exercise, insulin-stimulated glucose uptake was improved (∼70%, P < 0.001) independent of diet composition and despite normal insulin-stimulated regulation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase, Akt, GSK-3, and glycogen synthase. Interestingly, exercise resulted in a sustained reduction (∼20%, P < 0.05) in MCoA content 4 h after exercise that correlated ( r = 0.65, P < 0.001) with improved insulin-stimulated glucose uptake. Four days of Fat diet resulted in an increased content of intramyocellular triacylglycerol ( P < 0.01) but did not influence muscle MCoA content or whole body insulin-stimulated glucose uptake. However, at the muscular level proximal insulin signaling and insulin-stimulated glucose uptake appeared to be compromised, although to a minor extent, by the Fat diet. Collectively, this study indicates that reduced muscle MCoA content in recovery from exercise may be part of the adaptive response leading to improved insulin action on glucose uptake after exercise in human muscle.


2008 ◽  
Vol 115 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Grit Sommer ◽  
Antje Garten ◽  
Stefanie Petzold ◽  
Annette G. Beck-Sickinger ◽  
Matthias Blüher ◽  
...  

Over the last few years, it has become obvious that obesity and insulin resistance are linked by a variety of proteins secreted by adipocytes. Visfatin/PBEF (pre-B-cell colony-enhancing factor) has recently been identified as a novel adipokine with insulin-mimetic effects. Furthermore, an enzymatic function has been reported that reveals visfatin/PBEF as Nampt (nicotinamide phosphoribosyltransferase; EC 2.4.2.12.). Moreover, reports on the structure and hormonal regulation of visfatin/PBEF/Nampt have given further insights into its potential physiological role. The present review summarizes studies on visfatin/PBEF/Nampt as a novel adipokine.


2000 ◽  
Vol 278 (6) ◽  
pp. E1097-E1103 ◽  
Author(s):  
Carmen Alvarez ◽  
Danielle Bailbe ◽  
Françoise Picarel-Blanchot ◽  
Eric Bertin ◽  
Ana-Maria Pascual-Leone ◽  
...  

The availability of the Goto-Kakisaki (GK) rat model of non-insulin-dependent diabetes mellitus prompted us to test the effect of a limited period of undernutrition in previously diabetic young rats on their insulin secretion and insulin action during adult age. Four-week-old female GK rats were either food restricted (35% restriction, 15% protein diet) or protein and energy restricted (35% restriction, 5% protein diet) for 4 wk. Food restriction in the young GK rat lowered weight gain but did not aggravate basal hyperglycemia or glucose intolerance, despite a decrease in basal plasma insulin level. Furthermore, the insulin-mediated glucose uptake by peripheral tissues in the GK rat was clearly improved. We also found that food restriction, when it is coupled to overt protein deficiency in the young GK rat, altered weight gain more severely and slightly decreased basal hyperglycemia but conversely aggravated glucose tolerance. Improvement of basal hyperglycemia was related to repression of basal hepatic glucose hyperproduction, despite profound attenuation of basal plasma insulin level. Deterioration of tolerance to glucose was related to severe blunting of the residual glucose-induced insulin secretion. It is, however, likely that the important enhancement of the insulin-mediated glucose uptake helped to limit the deterioration of glucose tolerance.


2016 ◽  
Vol 310 (11) ◽  
pp. E1036-E1052 ◽  
Author(s):  
Xia Lei ◽  
Susana Rodriguez ◽  
Pia S. Petersen ◽  
Marcus M. Seldin ◽  
Caitlyn E. Bowman ◽  
...  

The gene that encodes C1q/TNF-related protein 5 (CTRP5), a secreted protein of the C1q family, is mutated in individuals with late-onset retinal degeneration. CTRP5 is widely expressed outside the eye and also circulates in plasma. Its physiological role in peripheral tissues, however, has yet to be elucidated. Here, we show that Ctrp5 expression is modulated by fasting and refeeding, and by different diets, in mice. Adipose expression of CTRP5 was markedly upregulated in obese and diabetic humans and in genetic and dietary models of obesity in rodents. Furthermore, human CTRP5 expression in the subcutaneous fat depot positively correlated with BMI. A genetic loss-of-function mouse model was used to address the metabolic function of CTRP5 in vivo. On a standard chow diet, CTRP5-deficient mice had reduced fasting insulin but were otherwise comparable with wild-type littermate controls in body weight and adiposity. However, when fed a high-fat diet, CTRP5-deficient animals had attenuated hepatic steatosis and improved insulin action. Loss of CTRP5 also improved the capacity of chow-fed aged mice to respond to subsequent high-fat feeding, as evidenced by decreased insulin resistance. In cultured adipocytes and myotubes, recombinant CTRP5 treatment attenuated insulin-stimulated Akt phosphorylation. Our results provide the first genetic and physiological evidence for CTRP5 as a negative regulator of glucose metabolism and insulin sensitivity. Inhibition of CTRP5 action may result in the alleviation of insulin resistance associated with obesity and diabetes.


Sign in / Sign up

Export Citation Format

Share Document