scholarly journals How Hormones Influence Composition and Physiological Function of the Brain-Blood Barrier

2015 ◽  
pp. S259-S264 ◽  
Author(s):  
R. HAMPL ◽  
M. BIČÍKOVÁ ◽  
L. SOSVOROVÁ

Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

Author(s):  
Richard Hampl ◽  
Marie Bičíková ◽  
Lucie Sosvorová

AbstractHormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.


2020 ◽  
Author(s):  
Xiaoqing Li ◽  
Vamsidhara Vemireddy ◽  
Qi Cai ◽  
Hejian Xiong ◽  
Peiyuan Kang ◽  
...  

AbstractThe blood-brain barrier (BBB) tightly regulates the entry of molecules into the brain by tight junctions that seals the paracellular space and receptor-mediated transcytosis. It remains elusive to selectively modulate these mechanisms and to overcome BBB without significant neurotoxicity. Here we report that light stimulation of tight junction-targeted plasmonic nanoparticles selectively opens up the paracellular route to allow diffusion through the compromised tight junction and into the brain parenchyma. The BBB modulation does not impair vascular dynamics and associated neurovascular coupling, or cause significant neural injury. It further allows antibody and adeno-associated virus delivery into local brain regions. This novel method offers the first evidence of selectively modulating BBB tight junctions and opens new avenues for therapeutic interventions in the central nervous system.One Sentence SummaryGentle stimulation of molecular-targeted nanoparticles selectively opens up the paracellular pathway and allows macromolecules and gene therapy vectors into the brain.


1994 ◽  
Vol 107 (5) ◽  
pp. 1347-1357 ◽  
Author(s):  
H. Wolburg ◽  
J. Neuhaus ◽  
U. Kniesel ◽  
B. Krauss ◽  
E.M. Schmid ◽  
...  

Tight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability. The complexity of tight junctions, defined as the number of branch points per unit length of tight junctional strands, decreased 5 hours after culture but thereafter remained almost constant. In contrast, the association of tight junction particles with the cytoplasmic leaflet of the endothelial membrane bilayer (P-face) decreased continuously with a major drop between 16 hours and 24 hours. The complexity of tight junctions could be increased by elevation of intracellular cAMP levels while phorbol esters had the opposite effect. On the other hand, the P-face association of tight junction particles was enhanced by elevation of cAMP levels and by coculture of endothelial cells with astrocytes or exposure to astrocyte-conditioned medium. The latter effect on P-face association was induced by astrocytes but not fibroblasts. Elevation of cAMP levels together with astrocyte-conditioned medium synergistically increased transendothelial electrical resistance and decreased inulin permeability of primary cultures, thus confirming the effects on tight junction structure and barrier function. P-face association of tight junction particles in brain endothelial cells may therefore be a critical feature of blood-brain barrier function that can be specifically modulated by astrocytes and cAMP levels. Our results suggest an important functional role for the cytoplasmic anchorage of tight junction particles for brain endothelial barrier function in particular and probably paracellular permeability in general.


Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

Background: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. Objective: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. Methods: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. Results: The miFe3O4 NPs, with a mean diameter of 8.45 ± 0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). Conclusion: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


2020 ◽  
Vol 21 (2) ◽  
pp. 591 ◽  
Author(s):  
Wolfgang Löscher ◽  
Alon Friedman

The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types, including astrocytes and pericytes. In addition to the anatomical characteristics of the BBB, various specific transport systems, enzymes and receptors regulate molecular and cellular traffic across the BBB. While the intact BBB prevents many macromolecules and immune cells from entering the brain, following epileptogenic brain insults the BBB changes its properties. Among BBB alterations, albumin extravasation and diapedesis of leucocytes from blood into brain parenchyma occur, inducing or contributing to epileptogenesis. Furthermore, seizures themselves may modulate BBB functions, permitting albumin extravasation, leading to activation of astrocytes and the innate immune system, and eventually modifications of neuronal networks. BBB alterations following seizures are not necessarily associated with enhanced drug penetration into the brain. Increased expression of multidrug efflux transporters such as P-glycoprotein likely act as a ‘second line defense’ mechanism to protect the brain from toxins. A better understanding of the complex alterations in BBB structure and function following seizures and in epilepsy may lead to novel therapeutic interventions allowing the prevention and treatment of epilepsy as well as other detrimental neuro-psychiatric sequelae of brain injury.


2020 ◽  
Vol 21 (12) ◽  
pp. 4268 ◽  
Author(s):  
Fatima Y. Noureddine ◽  
Raffaele Altara ◽  
Fan Fan ◽  
Andriy Yabluchanskiy ◽  
George W. Booz ◽  
...  

The effects of the renin–angiotensin system (RAS) surpass the renal and cardiovascular systems to encompass other body tissues and organs, including the brain. Angiotensin II (Ang II), the most potent mediator of RAS in the brain, contributes to vascular dementia via different mechanisms, including neuronal homeostasis disruption, vascular remodeling, and endothelial dysfunction caused by increased inflammation and oxidative stress. Other RAS components of emerging significance at the level of the blood–brain barrier include angiotensin-converting enzyme 2 (ACE2), Ang(1–7), and the AT2, Mas, and AT4 receptors. The various angiotensin hormones perform complex actions on brain endothelial cells and pericytes through specific receptors that have either detrimental or beneficial actions. Increasing evidence indicates that the ACE2/Ang(1–7)/Mas axis constitutes a protective arm of RAS on the blood–brain barrier. This review provides an update of studies assessing the different effects of angiotensins on cerebral endothelial cells. The involved signaling pathways are presented and help highlight the potential pharmacological targets for the management of cognitive and behavioral dysfunctions associated with vascular dementia.


1999 ◽  
Vol 277 (5) ◽  
pp. E901-E904 ◽  
Author(s):  
Abba J. Kastin ◽  
Victoria Akerstrom

Cocaine- and amphetamine-regulated transcript (CART) is a new anorectic peptide found in the brain and periphery. It is closely associated with leptin, an anorectic agent saturably transported across the blood-brain barrier (BBB). Using multiple time-regression analysis, we found that CART has a rapid rate of entry into brain from blood. However, there was no self-inhibition with CART, even when perfused in blood-free buffer or in fasted mice, showing a lack of saturation. HPLC showed that at least 58% of the injected CART reached brain tissue in intact form, and capillary depletion with and without washout showed that the CART was not bound to endothelial cells or adherent to vascular components. There was no evidence for an efflux system out of the brain for CART. Thus CART can cross the BBB from blood to brain, but its rapid rate of entry is not inhibited by excess CART or leptin.


2020 ◽  
Vol 18 (12) ◽  
pp. 1237-1249 ◽  
Author(s):  
Ruiqing Kang ◽  
Marcin Gamdzyk ◽  
Cameron Lenahan ◽  
Jiping Tang ◽  
Sheng Tan ◽  
...  

It is well-known that stroke is one of the leading causes of death and disability all over the world. After a stroke, the blood-brain barrier subsequently breaks down. The BBB consists of endothelial cells surrounded by astrocytes. Microglia, considered the long-living resident immune cells of the brain, play a vital role in BBB function. M1 microglia worsen BBB disruption, while M2 microglia assist in repairing BBB damage. Microglia can also directly interact with endothelial cells and affect BBB permeability. In this review, we are going to discuss the mechanisms responsible for the dual role of microglia in BBB dysfunction after stroke.


2020 ◽  
Author(s):  
Shirley Weiss ◽  
Lauren C. Clamon ◽  
Julia E. Manoim ◽  
Kiel G. Ormerod ◽  
Moshe Parnas ◽  
...  

AbstractGlia play key roles in regulating multiple aspects of neuronal development and function from invertebrates to humans. We recently found microdomain Ca2+ signaling in Drosophila cortex glia and astrocytes regulate extracellular K+ buffering and neurotransmitter uptake, respectively. Here we identify a role for ER store-operated Ca2+ entry (SOCE) in perineurial glia (PG), a distinct population that contributes to the blood-brain barrier (BBB). PG show a diverse range of Ca2+ oscillatory activity that varies based on their locale within the brain. Unlike cortex glia and astrocytes, PG Ca2+ oscillations do not require extracellular Ca2+ and are blocked by inhibition of SOCE or gap junctions. Disruption of these components triggers heat shock and mechanical-induced seizure-like episodes without effecting PG morphology or large molecule BBB permeability. These findings indicate SOCE-mediated Ca2+ oscillations in PG increase the susceptibility of seizure-like episodes in Drosophila, providing an additional link between glial Ca2+ signaling and neuronal activity.


Sign in / Sign up

Export Citation Format

Share Document