scholarly journals Autonomic Nervous System Function in Newly Diagnosed Multiple Sclerosis: Association With Lipid Levels and Insulin Resistance

2021 ◽  
pp. 875-882
Author(s):  
M. Hardoňová ◽  
P. Šiarnik ◽  
M. Siváková ◽  
B. Suchá ◽  
M. Vlček ◽  
...  

Autonomic nervous system (ANS) disorders are common in multiple sclerosis (MS). Previous studies showed differences in insulin resistance (IR) and lipoprotein levels in MS subjects compared to controls. Lipolysis caused by increased sympathetic activity could be one of the possible linking mechanisms leading to dyslipidemia in MS. Our study aimed to evaluate ANS activity in the context of glucose and lipid metabolism in people with MS. We prospectively measured short-term heart rate variability (HRV), fasting lipoprotein concentrations, and calculated IR indices based on plasma glucose and insulin levels during oral glucose tolerance test (oGTT) in 32 patients with MS and 29 healthy controls matched for age, sex and body mass index in our study. There was no significant difference in HRV parameters and lipoprotein levels between MS and controls. A significant positive correlation was found between low/high-frequency power ratio (LF/HF) and triglycerides (r=0.413, p=0.021) in MS subjects but not in controls. A significantly lower whole-body insulin sensitivity index (ISIMat) was found in patients with MS compared to the control group (7.3±3.7 vs. 9.8±5.6, p=0.041). No significant correlations were found between LF/HF and IR parameters. In MS subjects, the positive correlation of LF/HF with triglycerides could reflect the effects of sympathetic activity on lipolysis. Positive correlations of sympathetic activity with increased lipoprotein levels could rather reflect processes associated with immune system activation/inflammation, than processes involved in glucose homeostasis maintenance.

2021 ◽  
Vol 13 (5) ◽  
pp. 2439
Author(s):  
Alexis Espinoza-Salinas ◽  
Edgardo Molina-Sotomayor ◽  
Johnattan Cano-Montoya ◽  
Jose Antonio Gonzalez-Jurado

Autonomic nervous system function is an important predictor of physical fitness. The objective of this study was to find out the associations of autonomic activity parameters, lipid profile, insulin concentrations, and insulin resistance in overweight men with the level of physical activity. A descriptive and correlational study was carried out in 28 overweight men: 14 physically active (PA) and 14 physically inactive (PI). The following variables were assessed: Level of physical activity, HRV (heart rate variability), basal insulin, HOMA-IR index (Homeostasis Model Assessment Insulin-Resistance), and lipid profile. The main results show a positive correlation between the spectral parameters of the HRV and total cholesterol (r = 0.24), LDL (r = 0.59), VLDL (r = 0.86), and insulin (r = 0.88) of sedentary people, evidencing a directly proportional correlation with BMI. We conclude that weight gain and a sedentary lifestyle are associated with an increase in sympathetic discharge, which, in turn, is associated with an increase in lipid profile and insulin levels.


2018 ◽  
Vol 89 (11) ◽  
pp. 2187-2198 ◽  
Author(s):  
Tamaki Mitsuno ◽  
Ayaka Kai

A system for measuring clothing pressure employing a renewed hydrostatic pressure-balancing method was examined using three calibration methods. All methods revealed an almost perfectly linear Y = X relation for the pressure load (X) and the reading of the system (Y). In the application, the distributions of elastic band pressure were examined on 21 planes from head to foot. The preferred elastic band pressures of the leg and arm were significantly higher than those of the neck and abdomen. These results are due to the large presence of the autonomic nervous system at the surfaces of the neck and abdomen. In the area of the abdomen, the preferred elastic band pressure was higher from the mammilla to the shoulder than for the anteroposterior midlines. The development of compression ware must consider appropriate tightening for each body part.


2021 ◽  
Vol 26 (4) ◽  
pp. 74-80
Author(s):  
І.О.  Mitiuriaeva-Korniyko ◽  
O.V. Kuleshov ◽  
Ya.A. Medrazhevska ◽  
L.O. Fik ◽  
T.D. Klets

The article presents summarized materials on connective tissue dysplasia of the heart, primary mitral valve prolapse, dysfunction of the autonomic system. Aim of research: to estimate the condition of autonomic nervous system in children with primary mitral valve prolapse. We examined 106 children with mitral valve prolapse aged from 13 to 17 years old on the clinical base of city hospital “Center of mother and child” in Vinnitsya. Research included time and frequency domain (evaluation with cardiointervalography. Final results were compared with the control group records. The results showed no statistical significance among time domain parameters in the main group of children. All these indices displayed tendency to sympathetic and parasympathetic autonomic nervous system tonus increase in boys. However, sympathicotonia tendency was noted in girls only. Frequency domain parameters showed similar results, compared with the previous. Nevertheless, very low frequency parameters had statistically significant difference in both subgroups of patience with mitral valve prolapse, including males (3205.8±190.9 against 1717±154, р<0.05) and females (3280±220.1 against 1433±811, р<0.05). There were no statistically significant difference among other frequency domain parameters. Conclusions: we estimated that children with mitral valve prolapse have imbalanced autonomic homeostasis manifested by tone disturbances of both autonomic vegetative system branches with sympathetic predominance. Patients with primary mitral valve prolapse generally have increased sympathetic tone - both boys and girls - according to spectral analysis of heart rate variability indices, heart rate oscillation power of a very low frequency in particular (p<0.05). In children with mitral valve prolapse, the tone of parasympathetic nervous system is generally normal; there is a tendency to its increase in boys and decrease in girls. These children should be under close medical supervision by pediatricians and cardiologists.


2019 ◽  
Author(s):  
Ana M. Cruz ◽  
Yasaman Malekizadeh ◽  
Julia M. Vlachaki Walker ◽  
Paul G. Weightman Potter ◽  
Katherine Pye ◽  
...  

ABSTRACTAMP-activated protein kinase (AMPK) is a critical cellular and whole body energy sensor activated by energy stress, including hypoglycemia, which is frequently experienced by people with diabetes. Previous studies using direct delivery of an AMPK activator to the ventromedial hypothalamus (VMH) in rodents increased hepatic glucose production. Moreover, recurrent glucoprivation in the hypothalamus leads to blunted AMPK activation and defective hormonal responses to subsequent hypoglycemia. These data suggest that amplifying AMPK activation may prevent or reduce frequency hypoglycemia in diabetes. We used a novel brain-permeable AMPK activator, R481, which potently increased AMPK phosphorylation in vitro. R481 significantly increased peak glucose levels during glucose tolerance tests in rats, which were attenuated by treatment with AMPK inhibitor SBI-0206965 and completely abolished by blockade of the autonomic nervous system. This occurred without altering insulin sensitivity measured by hyperinsulinemic-euglycemic clamps. Endogenous insulin secretion was not altered by R481 treatment. During hyperinsulinemic-hypoglycemic clamp studies, R481 treatment reduced exogenous glucose requirements and amplified peak glucagon levels during hypoglycemia. These data demonstrate that peripheral administration of the brain permeable AMPK activator R481 amplifies the counterregulatory response to hypoglycemia in rats, which could have clinical relevance for prevention of hypoglycemia.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rupert P Williams ◽  
Michael I Okorie ◽  
Harminder Gill ◽  
John E Deanfield ◽  
Raymond J MacAllister ◽  
...  

Brief periods of ischaemia activate systemic mechanisms that induce whole-body tolerance to subsequent prolonged and injurious ischaemia. This phenomenon, remote ischaemic preconditioning (RIPC), is sufficiently acute to reduce ischaemia-reperfusion (IR) injury even when applied simultaneously with injurious ischaemia. This aspect of RIPC is termed remote postconditioning (RPostC). We have previously demonstrated a role for the autonomic nervous system in RIPC. Using an in vivo model of endothelial IR injury, we determined if RPostC is dependent on adrenergic autonomic mechanisms. Vascular ultrasound was used to assess endothelial function in healthy volunteers by measuring dilatation of the brachial artery in response to increased blood flow during reactive hyperaemia (flow-mediated dilatation; FMD). Endothelial IR injury was induced by 20 min of upper limb ischaemia (inflation of a blood pressure cuff to 200 mm Hg) followed by reperfusion. RPostC was induced by applying 2 cycles of 5 minutes ischaemia and 5 minutes reperfusion on the leg during arm ischaemia (via a second blood pressure cuff). In order to determine the dependence of RPostC on autonomic activation, we administered the alpha adrenoceptor blocker phentolamine (0.2– 0.7mg/min, intravenously) during the application of the RPostC stimulus. FMD was determined before ischaemia and at 20 minutes of reperfusion. FMD (percentage change from baseline diameter) was compared statistically by ANOVA. IR alone caused a significant reduction in FMD (5.9±0.7% pre- versus 2.2±0.4% post-IR, n=9, P<0.001). This reduction was prevented by RPostC (5.8±0.4% pre- versus 5.4±0.3% post-IR, n=8, P>0.05). Systemic phentolamine blocked the protective effects of RPostC (FMD 6.1±0.5% pre- versus 2.0±0.3% post-IR, n=7, P<0.001). These data indicate, for the first time in humans, that protection from RPostC depends on preservation of adrenergic signalling. Alpha blockade neutralises one of the endogenous mechanisms of ischemic protection in humans; the clinical consequences of this remain to be determined.


Author(s):  
Eco de Geus ◽  
Rene van Lien ◽  
Melanie Neijts ◽  
Gonneke Willemsen

Large individual differences in the activity of the autonomic nervous system (ANS) play a key role in risk for cardiovascular disease. This chapter presents an overview of the measurement strategies that can be used to study ANS activity in samples that are sufficiently large to allow genetic analyses. Heart rate variability, in particular, respiratory sinus arrhythmia (RSA) is identified as the measure of choice to index parasympathetic activity, whereas preejection period (PEP) is the measure of choice to index sympathetic activity. Twin studies have demonstrated significant genetic contributions to resting levels of both RSA (heritability estimates range from 25 to 71 percent) and PEP (heritability estimates range from 48 to 74 percent) and the genetic variance in these traits seems to further increase under conditions of psychological stress. Identifying the genetic variants that influence parasympathetic and sympathetic activity may increase our understanding of the role of the ANS in cardiovascular disease.


2017 ◽  
Vol 38 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Miroslav Vlcek ◽  
Adela Penesova ◽  
Richard Imrich ◽  
Milada Meskova ◽  
Martina Mravcova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document