scholarly journals Fused Deposition Modeling 3D Printing Technology in Textile and Fashion Industry: Materials and Innovation

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Manik Chandra Biswas
2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


2018 ◽  
Vol 237 ◽  
pp. 02006 ◽  
Author(s):  
Katarzyna Bryll ◽  
Elżbieta Piesowicz ◽  
Paweł Szymański ◽  
Wojciech Ślączka ◽  
Marek Pijanowski

3D printing technology was developed nearly 30 years ago. One of its characteristics is that instead of removing materials, 3D printing creates 3D elements directly from CAD models, adding one layer of material on another. This offers a beneficial capability of making complex elements in terms of shape and materials, impossible to be manufactured by traditional methods. Owing to intensive research in recent years, considerable progress has been achieved in the development and commercialisation of new innovative processes of 3D printing by fused deposition modeling (FDM), including printing of composite materials. The study outlines the main methods of creating polymer composite structures using FDM technology.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 128 ◽  
Author(s):  
Maisa Araújo ◽  
Livia Sa-Barreto ◽  
Tais Gratieri ◽  
Guilherme Gelfuso ◽  
Marcilio Cunha-Filho

The pharmaceutical industry is set to join the fourth industrial revolution with the 3D printing of medicines. The application of 3D printers in compounding pharmacies will turn them into digital pharmacies, wrapping up the telemedicine care cycle and definitively modifying the pharmacotherapeutic treatment of patients. Fused deposition modeling 3D printing technology melts extruded drug-loaded filaments into any dosage form; and allows the obtainment of flexible dosages with different shapes, multiple active pharmaceutical ingredients and modulated drug release kinetics—in other words, offering customized medicine. This work aimed to present an update on this technology, discussing its challenges. The co-participation of the pharmaceutical industry and compounding pharmacies seems to be the best way to turn this technology into reality. The pharmaceutical industry can produce drug-loaded filaments on a large scale with the necessary quality and safety guarantees; while digital pharmacies can transform the filaments into personalized medicine according to specific prescriptions. For this to occur, adaptations in commercial 3D printers will need to meet health requirements for drug products preparation, and it will be necessary to make advances in regulatory gaps and discussions on patent protection. Thus, despite the conservatism of the sector, 3D drug printing has the potential to become the biggest technological leap ever seen in the pharmaceutical segment, and according to the most optimistic prognostics, it will soon be within reach.


2019 ◽  
Vol 298 ◽  
pp. 64-68
Author(s):  
Yu Hua Dai ◽  
Xi Wang

As a branch of 3D printing technology, metal 3D printing is an important advanced manufacturing processing method. Metal 3D printing technology has been widely applied in a variety of areas, including the aerospace field, biomedical research and mold manufacturing. This paper proposed a new method for melting metal wires via contact resistance heating. Through the combination of a numerical control technique, a mechanical structure and computer software, a metal 3D printing device was designed based on the principle of fused deposition modeling. The printing nozzle of the device can be heated to over 1400°C in a few minutes. Additionally, we performed experiments with aluminum wire to demonstrate the feasibility of the printing method. The designed consumer-level desktop metal 3D printer cost less than 1500 dollars to fabricate.


2021 ◽  
Vol 58 (1) ◽  
pp. 142-153
Author(s):  
Doina Dimonie ◽  
Nicoleta Dragomir ◽  
Rusandica Stoica

In order to improve thermal behavior and dimensional strability of polylactic acid (PLA) designed both for 3D and 4D printing technology-fused deposition modeling (FDM) using a scalable procedure, the polymer was melt compounded with additives which control the morphology by crystallization and/or reinforcing. Using the formulations which provide polylactic acid (PLA) improved thermo-mechanical properties and desired dimensional stability, the new materials were shaped, on a laboratory line, as filaments for printing technology. The selected compounds were than scaled up on a 50 kg/h compounding line into granules which prove to have good shapability as filaments for printing technology (1.85 +/- 0.05 mm diameter, required ovality, good appearance and smooth surface) and performed properly at 3D printing. The obtained results proved that functional properties of PLA can be improved by various methods so that, depending on the reached performances, the new material can be converted through printing technology into items for performance applications. The novelty of the article is related to the fact that it identifies a modifying solution for controlling the morphology of a type of PLA designed for 3D printing that already has an advanced crystallinity.


2020 ◽  
Vol 15 ◽  
pp. 155892502094821
Author(s):  
Tatjana Spahiu ◽  
Eriseta Canaj ◽  
Ermira Shehi

3D printing is a well-known technology for creating 3D objects by laying down successive layers of various materials. Among the wide range of applications, fashion industry has adapted these technologies to revolutionize their brands. But due to the unique characteristics of textiles like comfort, flexibility, and so on, attempts have been made to create similar structures as textiles. The work presented here is part of a project to create garments using fused deposition modeling as 3D printing technology. Structures with various geometries are designed and tested with different materials starting from rigid to flexible. As a result, a fully 3D printed dress is created. Selecting this dress as a model, consumer acceptance for 3D printed garments is evaluated realizing an online survey containing 100 respondents. The data gathered show that respondents have knowledge of 3D printing, its advantages and the majority of them would accept wearing a 3D printed dress.


2020 ◽  
Vol 35 (8) ◽  
pp. 916-921
Author(s):  
Aysu Belen ◽  
Evrim Tetik

Placing dielectric lens structures into an antenna's aperture has proven to be one of the most reliable methods of enhancing its gain. However, the selected material and the prototyping method usually limit their fabrication process. With the advances in 3D printing technology and their applications, the microwave designs that were either impractical or impossible in the past to manufacture using traditional methods, are now feasible. Herein, a novel prototyping method by using 3D-printer technology for low-cost, broadband, and high gain dielectric lens designs has been presented. Firstly, the elliptical lens design has been modeled in the 3D EM simulation environment. Then fused deposition modeling based 3D-printing method has been used for the fabrication of the dielectric lens. The measured results of the 3D printed antenna show that the lens antenna has a realized gain of 17 to 20.5 dBi over 8-12 GHz. Moreover, the comparison of the prototyped antenna with its counterpart dielectric lens antenna in the literature has indicated that the proposed method is more efficient, more beneficial, and has a lower cost.


Sign in / Sign up

Export Citation Format

Share Document