scholarly journals NITROGEN FERTILIZER TRIALS ON PASTURES

Author(s):  
M.B. O'Connor ◽  
P.E.H. Gregg

On twenty-four sites throughout the country the effect of time and rate of applied nitrogen on "out-of-season" pasture production was studied over two seasons (1969-70 and 1970-71). Responses to spring-applied nitrogen wem more reliable than to autumn-applied. Spring responses varied from slight (2-7 kg DM/kg N) in the Waik& o, Bay of Plenty and parts of Canterbury to very good (10-20 kg DM/kg N) in Taranati, Dannevirke, southern Wairarapa, northern South Island, Westland and parts of Southland. When yield responses are considered as a substitute for hay, or other supplementary feedstuffs, payable results occur above about 7 kg DM/kg N. Factors such as time of application, soil type, pasture composition and amount of nitrogen in the soil affected the response to applied nitrogen.

1971 ◽  
Vol 11 (50) ◽  
pp. 320
Author(s):  
GJ Wells

Skeleton weed is difficult to control on cultivated fallows during the summer and experiments were commenced in 1963 on the use of short-term residual herbicides for chemically fallowing infested land for wheatgrowing. Rates and times of application of simazine mixtures, a picloram/2,4-D mixture, an atrazine/amiltrole mixture, and fenac were tested. Compared with cultivated fallows, chemical fallowing increased wheat yields in four years out of six. The yield responses were associated with increased soil nitrate and soil moisture at sowing, reflecting the improved weed control by herbicides, particularly during the summer period. The effects of toxic residues from simazine and atrazine on the wheat crop were influenced by rate and time of application, rainfall during the fallow period, and soil type.


1989 ◽  
Vol 40 (4) ◽  
pp. 729 ◽  
Author(s):  
WK Anderson ◽  
R McLean

Oat cultivars of tall (West), intermediate (Mortlock) and dwarf height (Echidna) were compared for their response to sowing time, nitrogen fertilizer and seed rate. Experiments were carried out in the 500-800 mm average annual rainfall zone in Western Australia at nine sites. Cultivars were compared in experiments involving different times (3) of sowing, levels (5) of applied nitrogen and rates (5) of seed and in another experiment including all combinations of two levels of sowing time, nitrogen and seed. The optimum sowing times for the three cultivars were similar, but the yield advantage for Echidna over West was 0.63 t ha-1 for late May sowing but only 0.25 t ha-1 for sowing in late July. Yield responses to applied nitrogen were dependent on soil nitrogen status, seasonal rainfall, sowing date, cultivar and seed-rate. On average, Echidna was more responsive (0.42 t ha-1) to the initial 30 kg ha-1 of nitrogen than Mortlock (0.23 t ha-1). The optimum seed rate (where an increase of 1 kg of seed increased yield by 10 kg ha-1) was 77, 67 and 61 kg ha-1 for Echidna, Mortlock and West corresponding to 225, 185 and 160 plants m-2. The largest yielding combination of cultivar, time of sowing, nitrogen and seed rates increased yields by from 1.32 to 3.23 t ha-1 (51-220%) compared to the control or low input treatment. Biomass at heading increased linearly to about 6.5 t ha-1 with rainfall up to 200 mm. Rainfall to heading in excess of 200 mm appeared to be inefficiently used for biomass production. Grain yields also increased linearly up to about 4 t ha-1 with increasing biomass at heading and up to 6 t ha-l with the correct choice of cultivar, time of sowing, nitrogen and seed rates.


2018 ◽  
Vol 215 ◽  
pp. 49-58 ◽  
Author(s):  
Libby R. Rens ◽  
Lincoln Zotarelli ◽  
Diane L. Rowland ◽  
Kelly T. Morgan

2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


1985 ◽  
Vol 25 (3) ◽  
pp. 505 ◽  
Author(s):  
TM Davison ◽  
RT Cowan ◽  
RK Shepherd ◽  
P Martin

A 3-year experiment was conducted at Kairi Research Station on the Atherton Tablelands, Queensland, to determine the effects of stocking rate and applied nitrogen fertilizer on the pasture yield and composition, diet selection by cows, and soil fertility of Gatton panic (Panicum maximum cv. Gatton) pastures. Thirty-two Friesian cows were used in a 4x2 factorial design: four stocking rates (2.0, 2.5, 3.0 and 3.5 cows/ha), each at two rates of fertilizer application 200 and 400 kg N/ha.year. The higher rate of fertilization increased the pasture green dry matter on offer at all samplings (P < 0.01); the increase ranged from 1 106 kg/ha in summer to 548 kg/ha in spring. Green dry matter decreased ( P< 0.0 1) with increasing stocking rate, with mean yields of 3736 and 2384 kg/ha at 2.0 and 3.5 cows/ha, respectively. Weed yields increased over the 3 years at the higher stocking rates for pastures receiving 200 kg N/ha.year. The crude protein content of leaf and stem increased with increasing stocking rate and amount of applied nitrogen fertilizer. Values ranged from 12.1 to 26.5% of dry matter (DM) in leaf and from 3.7 to 13.8% DM in stem. In leaf, sodium concentration (range 0.05-0.20% DM) was increased, while phosphorus concentration (range 0.21-0.44% DM) was decreased by the higher rate of fertilizer application. Plant sodium and phosphorus levels were inadequate for high levels of milk production. Dietary leaf content and crude protein contents were consistently increased by both a reduced stocking rate, and the higher rate of fertilization. Cows were able to select for leaf and at the lowest stocking rate, leaf in the diet averaged 38%; while the leaf content of the pasture was 20%. Dietary leaf content ranged from 38 to 57% in summer and from 11 to 36% in winter. Dietary crude protein ranged from 13 to 15% in summer and from 7 to 11% in winter and was positively correlated with pasture crude protein content and dietary leaf percentage. Soil pH decreased (P<0.05) from an overall mean of 6.3 in 1976 to 6.1 at 200 N and 5.8 at 400 N in 1979. Soil phosphorus status remained stable, while calcium and magnesium levels were lower (P<0.01) after 3 years.


1987 ◽  
Vol 38 (4) ◽  
pp. 681 ◽  
Author(s):  
AS Hodgson ◽  
DA MacLeod

Foliar-applied nitrogen (N) fertilizer was investigated as a means of ameliorating the damage to cotton of waterlogging associated with extended furrow irrigation of a cracking grey clay. Dissolved urea was applied at 0, 5, 10 and 20 kg N ha-1 to the cotton foliage one day before furrow irrigations lasting 4, 8, 16 and 32 h. Treatments were repeated at three crop irrigations. Storms following the first two irrigations delayed the recovery from waterlogging and reduced treatment differences. However, foliar-applied N significantly increased late square and green boll numbers after the third irrigation, and produced more open bolls and heavier lint yields than the control treatment at harvest. Lint yields increased by 2.8, 5.9, 8.4 and up to 10.5 kg ha-1 per kg of foliar N applied before irrigations lasting 4, 8, 16 and 32 h, respectively. From this interaction it was concluded that foliar-applied N ameliorated the effects of waterlogging. Nevertheless, in the most severe waterlogging treatment, yield response to foliar N reached a limit, indicating that some other factor had become limiting.


1975 ◽  
Vol 15 (76) ◽  
pp. 694 ◽  
Author(s):  
AJP Williamson ◽  
A Diatloff

In field experiments with soybeans (Glycine max) conducted over four seasons at Hermitage Research Station, Queensland, levels of applied nitrogen (as urea) up to 134 kg ha -1 were examined. Nodulated soybeans failed to respond to applied nitrogen in three out of the four seasons. A response was obtained in one season when abnormal climatic conditions of low rainfall and high temperatures resulted in a comparatively lower level of nodulation. The probability of such a response is discussed in relation to climatic data of the area over the past 108 years. Nodulation and nitrogen fertilizer increased seed size and nitrogen content of the seed in soils free of Rhizobium japonicum but nitrogen fertilizer had little effect on these characteristics in soils carrying R. japonicum. Oil content of the seed was negatively correlated with the nitrogen content in rhizobia-free soils. Nitrogen fertilizer had a depressive effect on nodulation. This effect was severe when inoculated soybeans were grown in soil free of R. japonicum particularly under conditions of declining soil moisture and high temperatures. In soils with R. japonicum the depressive effect was comparatively light.


1966 ◽  
Vol 2 (2) ◽  
pp. 101-105 ◽  
Author(s):  
Adeboyejo A. Fayemi

SummaryA four-year study from 1958 to 1962 showed that time of application of fertilizer nitrogen greatly influenced the yield of grain, the percentage of nitrogen and the crude protein of the grain under Nigerian conditions characteristic of the early maize cropping season from March to July. Split applications of nitrogen fertilizer significantly increased maize grain yield by 35 per cent when two equal doses were given one month and two months after planting; and by 31 per cent when four equal doses were supplied at planting and one month, two months and three months after seeding. Yield was significantly reduced when application was delayed two months after planting. High yields of maize were not obtained by supplying the whole of nitrogen fertilizer at one time, eidier at sowing or any time later during the growing season. However, applying all of the nitrogen fertilizer one month after planting significantly increased the percentage of nitrogen and of the crude protein content of the grain. The maize ear weight was favourably influenced by spreading the nitrogen application over the three-month period of the maize growth.


Sign in / Sign up

Export Citation Format

Share Document