scholarly journals Resource use efficiency and environmental emissions from an average Waikato dairy farm, and impacts of intensification using nitrogen fertiliser or maize silage

Author(s):  
S.F.Ledgard J.D.Finlayson J. Gavin ◽  
M.B. Blackwell ◽  
R.A. Carran ◽  
M.E. Wedderburn ◽  
N.A. Jollands

A life cycle assessment (LCA) approach was used to estimate whole-system (dairy farm + grazing and forage land) resource use and environmental emissions for an averag e Waikato dairy farm enterprise. Effects of increased production from 850 to 1020 kg milksolids/ha using more nitrogen (N) fertiliser (+200 kg N/ha/yr) or forage (+2 t DM/ha/yr maize and oats silage) were also assessed. Fertiliser N increased production and economic efficiency, but decreased environmental efficiency through a predicted increase in N leaching and greenhouse gas (GHG) emissions. In contrast, using forage increased the use of land but increased milksolids/ha and with no loss in environmental ef ficiency (per kg milksolids). A preliminary compar ison of the average Waikato farm system and an example Swedish dairy farm system showed small dif ferences in environmental efficiency (GHG or N leaching/m3 milk) but much higher (5-fold) energy efficiency on the Waikato farm. This is important to maintain, particularly as farms intensify, if "food-miles" (energy use in transpor ting produce to markets) become a component of our "ecolabel" for supplying produce to overseas markets. Keywords: dairy farm, ef ficiency, environment, intensification, maize, nitrogen, resource use

Author(s):  
S.F. Ledgard ◽  
C. Basset-Mens ◽  
S. Mclaren ◽  
M. Boyes

Assessment of energy use and greenhouse gas emissions associated with dairy products needs to account for the whole life cycle of the products, particularly with the debate about "food miles"(the transportation of product from producer to consumer). A life cycle assessment (LCA) of an average NZ dairy farm for 2005 showed that total energy use per kg milk from the "cradle-tomilk- in-the-vat" was 45-65% of that from EU farms. The greenhouse gas (GHG) emissions or carbon footprint showed similar relative trends although differences were smaller due, at least in part, to lower methane efficiency from lower-producing NZ cows. Energy use associated with shipping dairy product (e.g. cheese) from NZ to UK is equivalent to about one-quarter of the on-farm use. Even when added together, the energy use from the NZ farm and from shipping would still be less than onfarm energy use for the EU farms. However, this is affected by intensification and the Dexcel Resource Efficient Dairying trial showed that increasing maize silage use, and nitrogen fertiliser use in particular, increased the energy use and GHG emissions per kg milk by up to 190% and 23%, respectively. Thus, the trend for intensification on NZ dairy farms means that our comparative advantage with EU farms is diminishing. A focus on improved farm system practices and integration of mitigation options is required to reverse this trend. Keywords: food miles, greenhouse gases, energy, life cycle assessment, milk, New Zealand, efficiency


2017 ◽  
Vol 79 ◽  
pp. 147-152
Author(s):  
P.C. Beukes ◽  
P. Edwards ◽  
T. Coltman

Abstract The Forages for Reduced Nitrate Leaching programme (FRNL) aims to address the challenge of presenting farmers with alternatives for forage production that will sustain milk production and farm profit, but simultaneously reduce nitrogen leaching by 20% from current levels. This paper describes the improvements made to a dairy model comprising three software packages, and how this model was used to evaluate proposed farm system changes on a Canterbury dairy farm (Canlac Holdings) associated with the FRNL programme. After a baseline scenario was sensechecked against actual farm physical and financial data for the 2014-2015 season, alternative options were modelled in an additive way by expanding the effluent area, growing fodder beet on the platform, replacing some pasture with maize silage, growing diverse pastures on 7% of the milking platform, and including a feed pad. The cumulative effect of these changes was an increase of 3 and 13% in production and profit respectively, but only a 5% decrease in nitrogen leaching as estimated for the combined platform and support block areas over 3 climate years. A hypothetical scenario, of a third of the platform in diverse pastures, less nitrogen fertiliser, all fodder beet grown on the milking platform, lifted and fed on the feed pad, and with an oats catch crop following fodder beet, increased production and profit by 2 and 10%, respectively, with a reduction in N leaching of 19%. This result indicates that high-performing farmers have scope to reduce N leaching by ~20% and still increase profit by implementing some of the options emanating from the FRNL programme. Keywords: diverse pastures, dairy farm system, fodder beet, effluent block, feed pad, catch crop


2015 ◽  
Vol 77 ◽  
pp. 159-166
Author(s):  
T.O.R. Macdonald ◽  
J.S. Rowarth ◽  
F.G. Scrimgeour

The link between dairy farm systems and cost of environmental compliance is not always clear. A survey of Waikato dairy farmers was conducted to establish the real (non-modelled) cost of compliance with environmental regulation in the region. Quantitative and qualitative data were gathered to improve understanding of compliance costs and implementation issues for a range of Waikato farm systems. The average oneoff capital cost of compliance determined through a survey approach was $1.02 per kg milksolids, $1490 per hectare and $403 per cow. Costs experienced by Waikato farmers have exceeded average economic farm surplus for the region in the past 5 years. As regulation increases there are efficiencies to be gained through implementing farm infrastructure and farm management practice to best match farm system intensity. Keywords: Dairy, compliance, farm systems, nitrogen, Waikato


2019 ◽  
Vol 654 ◽  
pp. 841-849 ◽  
Author(s):  
N.D. Rao ◽  
M. Poblete-Cazenave ◽  
R. Bhalerao ◽  
K.F. Davis ◽  
S. Parkinson

Soil Research ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 94 ◽  
Author(s):  
Iris Vogeler ◽  
Rogerio Cichota ◽  
Josef Beautrais

Investigation of land-use and management changes at regional scales require the linkage of farm-system models with land-resource information, which for pastoral systems includes forage supply. The New Zealand Land Resource Inventory (NZLRI) and associated Land Use Capability (LUC) database include estimates of the potential stock-carrying capacity across the country, which can be used to derive estimates of average annual pasture yields. Farm system models and decision support tools, however, require information on the seasonal patterns of pasture growth. To generate such pasture growth curves (PGCs), the Agricultural Production Systems Simulator (APSIM) was used, with generic soil profiles based on descriptions of LUC classes, to generate PGCs for three regions of New Zealand. Simulated annual pasture yields were similar to the estimates of annual potential pasture yield in the NZLRI spatial database, and they provided information on inter-annual variability. Simulated PGCs generally agreed well with measured long-term patterns of seasonal pasture growth. The approach can be used to obtain spatially discrete estimates of seasonal pasture growth patterns across New Zealand for use in farm system models and for assessing the impact of management practices and climate change on the regional sustainability.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


2021 ◽  
Author(s):  
Deva Siva Veylan

Detached accessory dwelling units are a building typology that, when built to passive design standards, can help reduce GHG emissions while addressing the socioeconomic pressures facing many housing markets. Energy performance metrics like those used in passive design standards are based on per unit of floor area and lead to a size-bias against smaller housing typologies. A life cycle assessment of cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) is performed to understand their total life cycle energy use and GHG emissions implications. Additionally, an analysis using BEopt examines operational energy use for 10 cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) across all 17 climate zones and examines how cost-optimal passive design changes with house size. The results show that per-occupant energy use and GHG emissions are similar or better for small house sizes and that cost-optimal passive design does not change significantly with house size.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5567
Author(s):  
Pedro R. R. Rochedo ◽  
Panagiotis Fragkos ◽  
Rafael Garaffa ◽  
Lilia Caiado Couto ◽  
Luiz Bernardo Baptista ◽  
...  

Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.


Fruits ◽  
2013 ◽  
Vol 68 (4) ◽  
pp. 303-314 ◽  
Author(s):  
Sophie Graefe ◽  
Jeimar Tapasco ◽  
Alonso Gonzalez

Sign in / Sign up

Export Citation Format

Share Document