scholarly journals Spatial analysis of energy use and GHG emissions from cereal production in India

2019 ◽  
Vol 654 ◽  
pp. 841-849 ◽  
Author(s):  
N.D. Rao ◽  
M. Poblete-Cazenave ◽  
R. Bhalerao ◽  
K.F. Davis ◽  
S. Parkinson
Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


2021 ◽  
Author(s):  
Deva Siva Veylan

Detached accessory dwelling units are a building typology that, when built to passive design standards, can help reduce GHG emissions while addressing the socioeconomic pressures facing many housing markets. Energy performance metrics like those used in passive design standards are based on per unit of floor area and lead to a size-bias against smaller housing typologies. A life cycle assessment of cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) is performed to understand their total life cycle energy use and GHG emissions implications. Additionally, an analysis using BEopt examines operational energy use for 10 cost-optimal passive house sizes ranging from 230 m² (2,500 ft²) to 30 m² (300 ft²) across all 17 climate zones and examines how cost-optimal passive design changes with house size. The results show that per-occupant energy use and GHG emissions are similar or better for small house sizes and that cost-optimal passive design does not change significantly with house size.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5567
Author(s):  
Pedro R. R. Rochedo ◽  
Panagiotis Fragkos ◽  
Rafael Garaffa ◽  
Lilia Caiado Couto ◽  
Luiz Bernardo Baptista ◽  
...  

Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.


2005 ◽  
Vol 895 ◽  
Author(s):  
Vasilis Fthenakis ◽  
Hyung Chul Kim

AbstractThe life cycle of the thin film CdTe PV modules in the U.S. have been investigated based on materials and energy inventories for a commercial 25 MW/yr production plant. The energy payback times (EPBT) of these modules are 0.75 years and the GHG emissions are 18 gCO2-eq/kWh for average U.S. solar irradiation conditions. Adding the impact of an optimized ground-level balance of system (BOS), result in a total EPBT of 1.2 years and total life-cycle GHG emissions of 24 gCO2-eq/kWh.


Author(s):  
Milton Meckler

What does remain a growing concern for many users of Data Centers is their continuing availability following the explosive growth of internet services in recent years, The recent maximizing of Data Center IT virtualization investments has resulted in improving the consolidation of prior (under utilized) server and cabling resources resulting in higher overall facility utilization and IT capacity. It has also resulted in excessive levels of equipment heat release, e.g. high energy (i.e. blade type) servers and telecommunication equipment, that challenge central and distributed air conditioning systems delivering air via raised floor or overhead to rack mounted servers arranged in alternate facing cold and hot isles (in some cases reaching 30 kW/rack or 300 W/ft2) and returning via end of isle or separated room CRAC units, which are often found to fight each other, contributing to excessive energy use. Under those circumstances, hybrid, indirect liquid cooling facilities are often required to augment above referenced air conditioning systems in order to prevent overheating and degradation of mission critical IT equipment to maintain rack mounted subject rack mounted server equipment to continue to operate available within ASHRAE TC 9.9 prescribed task psychometric limits and IT manufacturers specifications, beyond which their operational reliability cannot be assured. Recent interest in new web-based software and secure cloud computing is expected to further accelerate the growth of Data Centers which according to a recent study, the estimated number of U.S. Data Centers in 2006 consumed approximately 61 billion kWh of electricity. Computer servers and supporting power infrastructure for the Internet are estimated to represent 1.5% of all electricity generated which along with aggregated IT and communications, including PC’s in current use have also been estimated to emit 2% of global carbon emissions. Therefore the projected eco-footprint of Data Centers into the future has now become a matter of growing concern. Accordingly our paper will focus on how best to improve the energy utilization of fossil fuels that are used to power Data Centers, the energy efficiency of related auxiliary cooling and power infrastructures, so as to reduce their eco-footprint and GHG emissions to sustainable levels as soon as possible. To this end, we plan to demonstrate significant comparative savings in annual energy use and reduction in associated annual GHG emissions by employing a on-site cogeneration system (in lieu of current reliance on remote electric power generation systems), introducing use of energy efficient outside air (OSA) desiccant assisted pre-conditioners to maintain either Class1, Class 2 and NEBS indoor air dew-points, as needed, when operated with modified existing (sensible only cooling and distributed air conditioning and chiller systems) thereby eliminating need for CRAC integral unit humidity controls while achieving a estimated 60 to 80% (virtualized) reduction in the number servers within a existing (hypothetical post-consolidation) 3.5 MW demand Data Center located in southeastern (and/or southern) U.S., coastal Puerto Rico, or Brazil characterized by three (3) representative microclimates ranging from moderate to high seasonal outside air (OSA) coincident design humidity and temperature.


Author(s):  
Giuseppe Grosso ◽  
Ujué Fresán ◽  
Maira Bes-Rastrollo ◽  
Stefano Marventano ◽  
Fabio Galvano

Background: Current scientific literature suggests healthy dietary patterns may have less environmental impact than current consumption patterns, but most of the studies rely on theoretical modeling. The aim of this study was to assess the impact on resources (land, water, and energy) use and greenhouse gas (GHG) emissions of healthy dietary patterns in a sample of Italian adults. Methods: Participants (n = 1806) were recruited through random sampling in the city of Catania, southern Italy. Dietary consumption was assessed through a validated food frequency questionnaire (FFQ); dietary patterns were calculated through dietary scores. The specific environmental footprints of food item production/processing were obtained from various available life-cycle assessments; a sustainability score was created based on the impact of the four environmental components calculated. Results: The contribution of major food groups to the environmental footprint showed that animal products (dairy, egg, meat, and fish) represented more than half of the impact on GHG emissions and energy requirements; meat products were the stronger contributors to GHG emissions and water use, while dairy products to energy use, and cereals to land use. All patterns investigated, with the exception of the Dietary Approach to Stop Hypertension (DASH), were linearly associated with the sustainability score. Among the components, higher adherence to the Mediterranean diet and Alternate Diet Quality Index (AHEI) was associated with lower GHG emissions, dietary quality index-international (DQI-I) with land use, while Nordic diet with land and water use. Conclusions: In conclusion, the adoption of healthy dietary patterns involves less use of natural resources and GHG emissions, representing eco-friendlier options in Italian adults.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 463
Author(s):  
Vassilis D. Litskas ◽  
Nikolaos Tzortzakis ◽  
Menelaos C. Stavrinides

International agreements and policies on climate change urge for a drastic reduction in greenhouse gas (GHG) emissions to prevent a temperature rise above 2 °C at the end of the century. Determination of the product carbon footprint (CF), identifying carbon hotspots and examining ways for CF reduction is an essential step towards mitigation actions. Viticulture and winemaking are very important for the economy of Mediterranean regions, especially for the sustainability of rural areas. To determine the CF for wine, the Life Cycle Assessment (LCA) approach was adopted with system boundaries from vineyard to market. Input data were collected from 20 vineyards on the island of Cyprus, where the indigenous Xynisteri variety is cultivated and from an SME winery that uses the grapes to produce wine. The winery CF was 99,586 kg CO2-eq for 76,000 bottles produced (1.31 kg/0.75 L bottle). The uncertainty factor was determined to be ±50%, which was considered adequate for the methodology followed. The share of electrical energy was 46%, of packaging 18% and of the vineyard 16%. Fuel (transportation and heating), as well as waste management (solid and wastewater) contributed 10% each to the CF. There is potential for mitigation of the CF by replacing the bottles currently used by lighter ones, lowering the energy use and reusing a part of the solid waste as fertilizer. Research towards eco-innovation of viticulture/winemaking is essential for reducing the footprint of the sector to promote sustainable wine production.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5254
Author(s):  
Manuel Raul Pelaez-Samaniego ◽  
Juan L. Espinoza ◽  
José Jara-Alvear ◽  
Pablo Arias-Reyes ◽  
Fernando Maldonado-Arias ◽  
...  

High dependency on fossil fuels, low energy efficiency, poor diversification of energy sources, and a low rate of access to electricity are challenges that need to be solved in many developing countries to make their energy systems more sustainable. Cogeneration has been identified as a key strategy for increasing energy generation capacity, reducing greenhouse gas (GHG) emissions, and improving energy efficiency in industry, one of the most energy-demanding sectors worldwide. However, more studies are necessary to define approaches for implementing cogeneration, particularly in countries with tropical climates (such as Ecuador). In Ecuador, the National Plan of Energy Efficiency includes cogeneration as one of the four routes for making energy use more sustainable in the industrial sector. The objective of this paper is two-fold: (1) to identify the potential of cogeneration in the Ecuadorian industry, and (2) to show the positive impacts of cogeneration on power generation capacity, GHG emissions reduction, energy efficiency, and the economy of the country. The study uses methodologies from works in specific types of industrial processes and puts them together to evaluate the potential and analyze the impacts of cogeneration at national level. The potential of cogeneration in Ecuador is ~600 MWel, which is 12% of Ecuador’s electricity generation capacity. This potential could save ~18.6 × 106 L/month of oil-derived fuels, avoiding up to 576,800 tCO2/year, and creating around 2600 direct jobs. Cogeneration could increase energy efficiency in the Ecuadorian industry by up to 40%.


2014 ◽  
Vol 41 (4) ◽  
pp. 285-293 ◽  
Author(s):  
Eugene A. Mohareb ◽  
Adrian K. Mohareb

One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document