scholarly journals SYNTHESIS AND SPECTRAL CHARACTERISTICS OF Cu(II), Ni(II) AND Fe(III) NANOSIZED COM­PLEXES ON THE SURFACE OF CARBON QUANTUM DOT

2021 ◽  
Vol 87 (9) ◽  
pp. 3-13
Author(s):  
Volodymyr Ogenko ◽  
Svitlana Orysyk ◽  
Ljudmila Kharkova ◽  
Oleg Yanko ◽  
Dongchu Chen

Processes of interaction between carbon quantum dots (CQDs) and solutions of Cu(II) Ni(II) and Fe(III) chlorides in the surface layer have been investigated by electron and IR spectroscopy. When hydrochloric acid is added to the aqueous suspension of CQDs, there is a signi­ficant batochromic shift of the average absorption band (AB) by 1285 cm-1 with a decrease in its intensity to ε = 23.39. The presence of copper in the suspension of CQDs at room temperature leads to a decrease in the intensity of this AB (ε = 21.80), which indicates the interaction of CQDs with metal ions. After heating the suspension for 1 and 3 hours, the gypsochromic shift of this ABs (by 335 cm-1) to 27790 cm-1 with a decrease in intensity depending on the heating time was recorded. Such changes in the UV–Vis Spectrum are due to the redistribution of the electron density of electron transitions n → π *due to the coordination of functional groups with metal ions and the appearance of transitions with charge transfer from ligand to metal (CQD→Cu2+). When heating the suspensions significantly increases the absorption intensity of the AB at 22070 cm-1: from ε = 4.59 to ε = 6.75, which indicates the formation of transitions with charge transfer from ligand to metal (ChTLM) due to the coordination of copper ions with CQD. In the absorption spectra of CQD suspensions with NiCl2 before heating, a hypsochromic shift of AB at 27305 cm-1 by 150 cm-1 and an increase in the intensity of its to ε = 4.95 were registered. That is, Ni(II) ions also form coordination bonds with functional groups on the periphery of the CQD. After heating hydrochloric acid suspensions of CQD with FeCl3, in contrast to the chlorides of previous metals, in the UV-region registered shoulder-shaped AB at 31545 cm-1, the intensity of which increases with heating time (from ε = 9.59 to ε = 12.10), and in the visible region, a weakly intense shoulder-shaped AB at 19345 cm-1 (ε = 3.71 and 4.58), associated with the presence of dd-electron transitions in the metal ion. Such changes in the absorption spectra are explained by the fact that iron may interact with CQD in different ways (in addition to coordination with functional donor groups, the formation of coordination bonds with the π-electron system of conjugated CQDs bonds), which leads to additional weak shoulder-like AB at 31545 cm-1. The IR-spectra data of CQDs showed the presence of a number of characteristic ABs for functionalized CQDs: ν(N–H) at 3260 сm1, (C=O) at 1830, 1840 and 1850 сm1, –С=O(NH) at 1770 сm1, ν(C=N) at 1680 and δ(N–H) at 1640 сm1 and 320-360 см-1 СП ν(Cu–Cl, Ni–Cl, Fe–Cl), which confirms the coordination of metals on the surface of CQDs.

2002 ◽  
Vol 09 (01) ◽  
pp. 359-364 ◽  
Author(s):  
A. S. VINOGRADOV ◽  
A. B. PREOBRAJENSKI ◽  
S. A. KRASNIKOV ◽  
T. CHASSÉ ◽  
R. SZARGAN ◽  
...  

High-resolution, uniformly calibrated Fe 2p 3/2 absorption spectra of various Fe(II) and Fe(III) compounds with the metal atom octahedrally coordinated to atomic and molecular ligands are analyzed expecting changes in the absorption spectra due to differences in the formal valence state and in the character of the chemical bond. Particular attention is given to revealing spectral characteristics of the 3d π–2π(π*) charge transfer (π-back-donation effect) between the iron atom and cyanide ligands.


Author(s):  
Maris Klavins

Humic substances are high molecular weight refractory polycationites formed during decay of living organic matter and through biosynthesis of low molecular weight organic substances (metabolites or decay products of living organisms). Presence of many functional groups in the structure of humic substances determines their ability to interact with metal ions forming stable complexes and influencing metal ion speciation in the environment and mobility, behaviour and speciation forms in the environment. Presently humic substances are a product of industrial scale and quantities in amounts of hundreds of tons are produced. The aim of this study is to analyse derivatization possibilities of humic substances. To achieve this aim derivatization of humic substances using acylation (at first introduction of acetylgroups, but also changing length acyl chains are considered) are used. Also alkylation is used. Mild oxidation can help to obtain modified products with reduced molecular weight. Another approach includes introduction of new functional groups and structures. To achieve this aim, conjugates with short peptides, amines and sugar derivatives using coupling with water-soluble carbodiimides are obtained. As basic characteristics elemental analysis as well as functional analysis have been used, supported with Fourier transform infrared (FTIR), 13C nuclear magnetic resonance spectrometry and other methods. Derivatives of humic substances containing sulpho, amino, and hydroxylgroups and thiolgroups were synthesized and their properties were analyzed in respect to their their elemental composition; functional group content changes in spectral characteristics. The derivatives of humic substances showed significant differences in the number and in ability to interact with the metal ions, which were reflected in their complexation properties towards metal ions. FTIR spectra gave evidence of the presence of metal ions, strongly bound and protected in inner sphere complexes. The obtained derivatives of humic substances can be used for remediation of environment contaminated with heavy metal ions.


1966 ◽  
Vol 44 (14) ◽  
pp. 1643-1653 ◽  
Author(s):  
G. H. Faye

A spectrophotometric study of the Cu(II) – acetone – hydrochloric (hydrobromic) acid systems has revealed that at relatively high ratios of halide: copper there is a probable equilibrium between four-, five-, and six-coordinate halogenocopper(II) complexes. A distorted tetrahedral species is favored at the highest ratios. Ligand field bands of pseudo-octahedral monohalogenocopper(II) complexes and, in the visible region, a charge transfer band of the six-coordinate complex, [CuCl4(ac)2]2−, have been identified. The results of the present work point to the important role of the solvent in determining the geometries and absorption spectra of the complexes, a factor that seems to have been misinterpreted by some previous workers.


2020 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Zeren Li

In this paper, the generation mechanism, influencing factors and application of the luminescent properties of magnetic polymers are reviewed. In practical applications, magnetic polymers exhibit a variety of unique luminescent properties, including photoluminescence, electroluminescence and thermoluminescence. There are many factors affecting the luminescent properties of different kinds of magnetic polymers, including the types of magnetic centers, the properties of metal ions, the charge transfer between metal ions and ligands, and the influence of functional groups on the main and side chains of the polymers. This paper explains the luminescent properties of magnetic polymers from the aspects of generation mechanism and influencing factors.


In a paper recently communicated to the Royal Society, experiments dealing with the absorption spectra of several metals were described, in which it was found that bismuth vapour shows both lines and bands in absorption. The banded spectrum consists of three groups of bands, each group consisting of a number of bands degraded towards the red, the group of bands in the visible region appearing at high temperatures. In the above experiments it was hoped that by raising the temperature of the absorption chamber sufficiently high, and raising the absorption in the lines of the several bands, it might be possible to detect a fine structure in some of these bands. Accordingly, the author modified the furnace previously used so as to blow through it a larger quantity of compressed air, and succeeded finally by using coke and this furnace to obtain a temperature of about 1500°C. to 1600°C. At this temperature the vapour emitted a fluorescent radiation orange yellow in colour.


1964 ◽  
Vol 42 (4) ◽  
pp. 856-860 ◽  
Author(s):  
P. Rama Murthy ◽  
C. C. Patel

Pyridine N-oxide complexes having the composition ZrO(Py•O)6(ClO4)2, Th(Py•O)8(ClO4)4, and UO2(Py•O)5(ClO4)2 have been prepared. The infrared and electronic absorption spectra show that the bonding between the metal and pyridine N-oxide in the complexes has occurred by donation of the lone pair of p-electrons on oxygen to the metal, and that the π-bond character of NO group increases in the complexes as uranyl < thorium < zirconyl. The decrease in the vibrational structure of the UO22+ spectrum in the visible region indicates strong coordination of pyridine N-oxide to the uranyl group. The decomposition temperatures of zirconyl, thorium, and uranyl complexes are 307, 350, and 319 °C respectively.


Sign in / Sign up

Export Citation Format

Share Document