scholarly journals Study of Dielectric, Polarization Properties of Cyclopentanol and Their Solutions in Cyclopentane by a New Variation Method

2021 ◽  
Vol 7 (12) ◽  
pp. 12-18
Author(s):  
S. Useinova

Results of calculating the theoretical principles of the variational method for measuring the dielectric parameters of polar liquids: cyclopentanol and its solutions in cyclopentane have been shown in the paper. Their dielectric constant ξ' and dielectric losses ξ'' are calculated. Solutions to the equations were found and a graphical solution method and an automated method for calculating ξ' and ξ'' were developed on the basis of this method. Comparison with the results of other methods revealed that these indicators are at the same time minimal within 1.5–2.0%.

Author(s):  
Anatolii G. Belous ◽  
◽  
Oleg I. V'yunov ◽  
Oleg Z. Yanchevskii ◽  
Leonid L. Kovalenko ◽  
...  

Materials with a high dielectric constant (e > 1000) based on complex oxides of spontaneously polarized systems, lithium-conducting systems, and oxides of transition metals were studied. It was shown in dielectric ceramics Ba(Ti,Sn)O3 the absence of significant dispersion of dielectric parameters (e and tg δ) in a wide frequency range from 1 to 105 Hz. The introduction of MnO2 and Al2O3-SiO2-TiO2 improves dielectric parameters and reduces sintering temperature. Obtained ceramic materials are characterized by high dielectric constant values e ~ 13000–16000 and low dielectric losses tg d ~ 0.05–0.06 (at 1 MHz). Synthesized solid solutions of La0.5Li0.5-xNaxTiO3 system, where x = 0 and 0.1, have high values e¢ > 104 at low frequencies (f ≤ 10 Hz). Dielectric properties of these materials are determined by the lithium ions mobility that increases with the rise of sodium content by increasing bottleneck size and decreases by the number of lithium vacancies reduction. The disadvantage of such materials is the decrease in dielectric constant with frequency increase. It was found that the ceramic СaСu3Тi4–xAlxО12-y-0.5xFy with x/y = 0.04/0.04 after sintering for 10 h is characterized by dielectric parameters: e¢ » 71000 (1 kHz) and tg d » 0.047. Introduction of aluminum (x/y = 0.04/0) or fluorine (0/0.08) in CCTO reduces dielectric losses (tg d » 0.044). The advantages of this type of material are a wide frequency range of high dielectric constant and relatively low dielectric loss. Synthesized materials can be used for the development of ceramic capacitors with high characteristics.


2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


Author(s):  
Л.С. Камзина ◽  
G. Li

The temperature dependences of the dielectric parameters were studied, as well as the changes in the dielectric constant with time in ceramic 33PbYb1 / 2Nb1 / 2O3-22PbZrO3-45 PbTiO3 samples in electric fields (0 <E <8 kV / cm). It is shown that in the phase existing below the temperature of the morphotropic phase transition, in addition to the rhombohedral and tetragonal phases, a small fraction of the relaxor pseudocubic phase is present. It was found that, unlike other relaxors, the dielectric constant practically does not change with time when an electric field is applied in the phase below the temperature of the morphotropic phase transition. Possible reasons for this behavior are discussed.


2006 ◽  
Vol 3 (4) ◽  
pp. 313-328
Author(s):  
K. D. Mandal ◽  
L. Behera

The perovskite oxides GdCo1-xFexO3(x = 0.10, 0.20) were prepared by chemical method. The dielectric behavior of compositions with x = 0.10 and 0.20 in the system GdCo1-xFexO3was studied in the temperature range 300-500 K. It is observed that dielectric constant increases with increasing Fe2+ions concentration. The frequency dependence of dielectric constant in these materials indicates that space charge polarization contributes significantly to their observed dielectric parameters. A uniform distribution of grains is observed from the microstructure by Scanning electron microscopy.


2012 ◽  
Vol 4 (2) ◽  
pp. 297 ◽  
Author(s):  
M. M. Rahman ◽  
P. K. Halder ◽  
F. Ahmed ◽  
T. Hossain ◽  
M. Rahaman

Spinel Mn-Zn ferrites with composition MnxZn0.4Ca0.6-2xFe2+xO4, where x = 0.10, 0.15, 0.20, 0.25 and 0.30 have been prepared by conventional ceramic technique sintered at    1300 °C for 4 hours. The influence of Ca-substitution on various properties of Mn-Zn ferrites have been studied in this work. Investigations were carried out by the measurements of Curie temperature, permeability, loss tangent, Q-factor, dielectric constant and AC resistivity of the samples. Curie temperature (Tc), the real part of initial permeability (µ´), loss tangent (tan ?), and AC resistivity have been found to be decreased while the Q-factor increases with the increase in Ca-content. The frequency characteristics of the dielectric constant and AC resistivity have been found to be decreased as the frequency increases. Maxwell-Wagner interfacial type of dielectric polarization was observed with the addition of Ca-content over the entire range of frequency considered. Keywords: Spinel ferrites; Sintering temperature; Initial permeability; Dielectric constant.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i2.9752 J. Sci. Res. 4 (2), 297-306 (2012)


With the aid of classical statistical mechanics, a general expression for the static dielectric constant is derived. It is found, as in earlier work, that the dielectric constant is dependent upon the mean-square dipole moment of a macroscopic spherical sample of the substance. This mean-square moment is expanded as a series in powers of the mean molecular polarizability, and the terms proportional to the zero and first powers are evaluated in detail and in such a way that the long- and the short-range effects are separated. The former are determined with the aid of macroscopic arguments, so that a purely molecular theory remains. In the limit when short-range directional forces are zero, the formula reduces to the well-known Onsager equation. It is found that it is not in general legitimate to replace the surroundings of a macroscopic sample by a continuum having the bulk properties of the substance, and for this reason the approximate equation of Harris & Alder is found to lead to doubtful conclusions. The general equations are applied to the experimental data for water and other liquids, and the results are not unsatisfactory.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Rohit K. Mahadule ◽  
Purushottam R. Arjunwadkar ◽  
Megha P. Mahabole

The polycrystalline compounds with chemical formula CaxSryBa1-x-yFe12-zLazO19 (CSBFLO) were synthesized via standard ceramic method. The chemical phase analysis was carried out by X-ray powder diffraction (XRD) method, which confirmed the formation of the magnetoplumbite phase belonging to ferrite structure. The frequency dependence of AC conductivity and dielectric constant was studied in the frequency range of 10 Hz to 2 MHz. The experimental results revealed that AC conductivity increases with increasing frequency, which is in agreement with Koop’s phenomenological theory. However, variation in dielectric constant required explanation in light of dielectric polarization. Magnetic characterization included studies of parameters such as Ms, Mr, Hc, and Tc, and results were explained via magnetic dilution and canting spin structure.


Sign in / Sign up

Export Citation Format

Share Document