Effect of Plasma Surface Treatment on Surface Energy and Adhesion Properties for Cr Coating on Substrates

2013 ◽  
Vol 51 (10) ◽  
pp. 735-741
Author(s):  
Dong-Yong Kim ◽  
Eun-Wook Jeong ◽  
Kwun Nam Hui ◽  
Youngson Choe ◽  
Jung-Ho Han ◽  
...  
10.14311/1562 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
Monika Pavlatová ◽  
Marta Horáková ◽  
Jan Hladík ◽  
Petr Špatenka

Polyolefin particles are hydrophobic, and this prevents their use for various applications. Plasma treatment is an environment-friendly polyolefin hydrophilisation method. We developed an industrial-scale plant for plasma treatment of particles as small as micrometers in diameter. Materials such as PE waxes, UHMWPE and powders for rotomolding production were tested to verify their new surface properties. We achieved significantly increased wettability of the particles, so that they are very easily dispersive in water without agglomeration, and their higher surface energy is retained even after sintering in the case of rotomolding powders.


2015 ◽  
Vol 662 ◽  
pp. 39-42
Author(s):  
Martin Bednarik ◽  
David Manas ◽  
Miroslav Manas ◽  
Jan Navratil ◽  
Ales Mizera ◽  
...  

Bonding has experienced an enormous expansion in the various applications during the last few years in the field of material joining, due to which it is classified as a new joining technology, although it is, in fact, very old. Compared with the conventional joining methods (riveting, screwing and welding), bonding provides a new material combination possibilities and it allows us to obtain special shapes and properties, which can not be formed by conventional methods. To create a high-quality bonded joint, it is important to wet the bonded surface very well wetted by a wetting liquid. The wettability of the material is characterized by a contact angle of wetting, by which the surface energy is subsequently determined. For a high quality of the joint, the bonded material must have higher surface energy than the witting liquid (adhesive) [1-3]. This paper describes the effect of plasma surface treatment on the surface properties (surface energy, microhardness) of low-density polyethylene (LDPE) and high-density polyethylene (HDPE), and also on the final strength of bonded joints. The measured results indicate, that plasma surface treatment is very effective tool for improvement of surface properties and strength of bonded joints of HDPE and LDPE. The strength of bonded joints after plasma surface treatment was increased up to 350 % compared to untreated material. A similar trend was observed even for surface energy and microhardness of materials.


2008 ◽  
Vol 128 (5) ◽  
pp. 339-342
Author(s):  
Dai Ling ◽  
Yin Ting ◽  
Lin Fuchang ◽  
Yan Fei

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 901
Author(s):  
Miklós Berczeli ◽  
Zoltán Weltsch

The development of bonding technology and coating technologies require the use of modern materials and topologies for the demanding effect and modification of their wetting properties. For the industry, a process modification process that can be integrated into a process is the atmospheric pressure of air operation plasma surface treatment. This can be classified and evaluated based on the wettability, which has a significant impact on the adhesive force. The aim is to improve the wetting properties and to find the relationship between plasma treatment parameters, wetting, and adhesion. High Impact PolyStyrene (HIPS) was used as an experimental material, and then the plasma treatment can be treated with various adjustable parameters. The effect of plasma parameters on surface roughness, wetting contact angle, and using Fowkes theory of the surface energy have been investigated. Seven different plasma jet treatment distances were tested, combined with 5 scan speeds. Samples with the best plasma parameters were prepared from 25 mm × 25 mm overlapping adhesive joints using acrylic/cyanoacrylate. The possibility of creating a completely hydrophilic surface was achieved, where the untreated wetting edge angle decreased from 88.2° to 0° for distilled water and from 62.7° to 0° in the case of ethylene glycol. The bonding strength of High Impact PolyStyrene was increased by plasma treatment by 297%.


2020 ◽  
Vol 232 ◽  
pp. 111403 ◽  
Author(s):  
Neelakandan M. Santhosh ◽  
Aswathy Vasudevan ◽  
Andrea Jurov ◽  
Anja Korent ◽  
Petr Slobodian ◽  
...  

2009 ◽  
Vol 518 (3) ◽  
pp. 1006-1011 ◽  
Author(s):  
Yuichi Setsuhara ◽  
Ken Cho ◽  
Kosuke Takenaka ◽  
Akinori Ebe ◽  
Masaharu Shiratani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document