scholarly journals Microstructure and Room Temperature Wear Properties of a Ni-Cr-B-Si-C Coating Layer Manufactured by the Laser Cladding Process

2018 ◽  
Vol 56 (6) ◽  
pp. 423-429 ◽  
Author(s):  
Tae-Hoon Kang ◽  
Kyu-Sik Kim ◽  
Soon-Hong Park ◽  
Kee-Ahn Lee
2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Xinhong Wang ◽  
Min Zhang ◽  
Shiyao Qu

(Ti,Mo)C multiple carbide reinforced Fe-based composite coating was produced by laser melting a precursor mixture graphite, ferrotitanium (Fe–Ti), and ferromolybdenum (Fe–Mo) powders. The results showed that flowerlike and cubic type (Ti,Mo)C multiple carbides were formed during laser cladding process. The selective area diffraction pattern analysis indicated that (Ti,Mo)C crystallizes with cubic structure, which indicates that (Ti,Mo)C carbides were multiple carbides with Mo dissolved in the TiC structure. The formation of (Ti,Mo)C particles was achieved via a nucleation-growth mechanism during the laser cladding process. Increasing the amount of Fe–Mo in the reactants led to a decrease of carbide size and an increase of volume fraction of carbides. The coating possessed good cracking resistance when the amount of Fe–Mo was controlled within a range of 15 wt %. The Fe-based surface coating reinforced by (Ti,Mo)C multiple carbides gave an excellent wear resistance.


2011 ◽  
Vol 287-290 ◽  
pp. 2225-2229 ◽  
Author(s):  
Chi Sheng Chien ◽  
Yu Sheng Ko ◽  
Tsung Yuan Kuo ◽  
Tze Yuan Liao ◽  
Ting Fu Hong ◽  
...  

Hydroxyapatite (HA) is a frequently used bioactive coating material. However, when HA coating is soaked in the simulated body fluid (SBF), it is usually detached from substrate material due to its high dissolution rate in the solution. Recently, it is found that Fluorapatite (FA) has a better anti-dissolution ability than HA. In this study, Fluorapatite was mixed with TiO2powder (either Anatase phase (A) or Rutile phase (R)) as a coating material precursor, and then be deposited on Ti-6Al-4V substrate to form the coating layer by using Nd-YAG laser cladding process. After soaking in SBF for various days, it is observed that dense ball-like apatite grew faster on the surface of the FA+R coating layer than that on the surface of the FA+A specimens. The corresponding Ca/P ratios of FA+R specimens also dropped faster than FA+A ones.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350034 ◽  
Author(s):  
BAOSHUAI DU

Laser cladding was applied to deposit in situ Fe - Ti - B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe - Ti - B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB 2 and Fe 2 B can be synthesized in the Fe - Ti - B coatings. The amount of TiB 2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe - Ti - B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
M. Zhang ◽  
S. X. Luo ◽  
S. S. Liu ◽  
X. H. Wang

(Ti,Mo)C, TiB2, and Mo2B particles reinforced Fe-based composite coatings were fabricated by laser cladding process. The effects of Molybdenum (Mo) on the microstructure and wear properties of the coatings were investigated. The results show that block-like or cuboidal TiB2, Mo2B and flower-like (Ti, Mo)C ceramics reinforcements were formed in the coatings. The size of reinforcements reduced with the increasing of FeMo70. However, cracks were found in the coating, while the addition of FeMo70 exceeded 9 wt %. The laser cladding coating presented a good wear resistance with a 9 wt % addition of FeMo70. With the increasing of FeMo70, the coatings enhanced the capability of resisting microcutting, microplowing, and surface plastic deformation.


2015 ◽  
Vol 750 ◽  
pp. 214-219
Author(s):  
Xiao Peng Liu ◽  
Pei Lei Zhang ◽  
Hua Yan ◽  
Yun Long Lu ◽  
Zhi Shui Yu ◽  
...  

Ni-W-Si intermetallic composite coatings consisting of primary tungsten dendrites and eutectic W/WSi2 were fabricated on 45 steel by laser cladding process using Ni-W-Si powder. The microstructure and composition of the coatings were characterized by SEM, XRD and EDS. The effect of the W content on the hardness and wear resistance of coatings was investigated. Results indicate that attributed to the high hardness and toughness of tungsten dendrites and fine and compact eutectic W/WSi2, coatings had high hardness being 950HV in maximum and the wear resistance was elevated to 4-8 times higher.


Author(s):  
Viviane Kettermann Fernandes ◽  
Alexander Lauffs ◽  
Adriano de Souza Pinto Pereira ◽  
Jhonattan Gutjahr ◽  
Milton Pereira ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.


Sign in / Sign up

Export Citation Format

Share Document