scholarly journals Thermal Properties of Copper Matrix-Ceramic Filler Composite Prepared by Polymer Solution Method

2022 ◽  
Vol 60 (1) ◽  
pp. 68-75
Author(s):  
Bok-Hyun Oh ◽  
Chung-Il Ma ◽  
Ji-Yeon Kwak ◽  
Heon Kong ◽  
Sang-Jin Lee

A copper (Cu) metal-ceramic filler composite with high thermal conductivity and a suitable thermal expansion coefficient was designed for application as a high-performance heat dissipation material. The purpose of the designed material was to utilize the high thermal conductivity of Cu while lowering its high coefficient of thermal expansion by using a ceramic filler. In this study, a Cu-sol containing a certain amount of AlN or SiC ceramic filler was prepared using a non-aqueous solvent. A complex was produced by applying a PVB polymer to prepare a homogeneous precursor. The composite sintered without pressure in a reducing atmosphere showed low thermal conductivity due to residual pores, but the hot press sintered composite exhibited improved thermal conductivity. The Cu composite with 30 wt% AlN filler added exhibited a thermal conductivity of 290 W/m·K and a thermal expansion coefficient of 9.2 × 10-6/oC. Due to the pores in the composite, the thermal conductivity showed some difference from the theoretical value calculated from the rule of mixture. However, the thermal expansion coefficient did not show any significant difference.

2021 ◽  
Vol 21 (9) ◽  
pp. 4964-4967
Author(s):  
Bok-Hyun Oh ◽  
Choong-Hwan Jung ◽  
Heon Kong ◽  
Sang-Jin Lee

A Cu metal-ceramic filter composite with high thermal conductivity and a suitable thermal expansion coefficient was designed to be applied to high performance heat dissipation materials. The purpose of using the ceramic filler was to decrease the high coefficient of thermal expansion of Cu matrix utilizing the high thermal conductivity of Cu. In this study, a SiC ceramic filler powder was added to the Cu sol including Zn as a liquid phase sintering agent. The final complex was produced by applying a PVB polymer to prepare a homogeneous precursor followed by sintering in a reducing atmosphere. The pressureless sintered composite showed lower thermal conductivity than pure bulk Cu due to the some residual pores. In the case of the Cu–SiC composite in which 10 wt% of SiC filler was added, it showed a thermal conductivity of 100 W/m·°C and a thermal expansion coefficient of 13.3×10−6/°C. The thermal conductivity showed some difference from the theoretical calculated value due to the pores in the composite, but the thermal expansion coefficient did not show a significant difference.


2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


2013 ◽  
Vol 752 ◽  
pp. 48-56
Author(s):  
Andrea Simon ◽  
Károly Kovács ◽  
C. Hakan Gür ◽  
Tadeusz Pieczonka ◽  
Zoltán Gácsi

Composites are special material which can provide individual properties such as high strength with low density or good thermal conductivity with low thermal expansion coefficient. Composites conform to the constantly evolving and more complex expectations. In order to make a product with good quality, it is important to choose suitable materials and technology. In this research powder metallurgy (PM), as one of the most common composite manufacturing technology, was examined -which factors and mechanisms influence mostly the properties of the product. Ishikawa method was used to reveal these correlations.


Author(s):  
Jianhua Yu ◽  
Huayu Zhao ◽  
Shunyan Tao ◽  
Xiaming Zhou ◽  
Chuanxian Ding

Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure show promising thermo-physical properties for use at temperatures exceeding 1200 °C. Sm2Zr2O7 bulk material does not only have high temperature stability, sintering resistance but also lower thermal conductivity and higher thermal expansion coefficient. The sintering characteristics of ceramic thermal barrier coatings under high temperature conditions are complex phenomena. In this paper, samarium zirconate (Sm2Zr2O7, SZ) powder and coatings were prepared by solid state reaction and atmosphere plasma spraying process, respectively. The microstructure development of coatings derived from sintering after heat-treated at 1200–1500 °C for 50 h have been investigated. The microstructure was examined by scanning electron microscopy (SEM) and the grain growth was analyzed in this paper as well.


2013 ◽  
Vol 459 ◽  
pp. 289-294
Author(s):  
Chi Hui Chien ◽  
Bo Syun Chen ◽  
Yii Der Wu

With advancement of technology, package sizes and products are becoming smaller due to miniaturization. Separate light-emitting diode (LED) chips and control integrated circuits with through silicon via (TSV) structurescan be combined to achieve reduced size. LED chipswithFlip Chip structureare capable of higher optical efficiency and heat dissipation. Analysis of LED chip structure after heat-related destruction of the chip indicated that the chip suffered stress from heating and cooling. The material used for TSV structures is copper, sincethis provides good electrical conductivity and high thermal conductivity. However, the thermal expansion coefficient of copper is higher than for other materials and can result in thermal expansion coefficient mismatch. Hence, the use of this material is likely to cause stress concentration and thus cause damage. In this study, molybdenum and tungsten were tested as replacements for copper in TSV, and the modified TSV was subjected to simulation analysis.The results indicate that replacement of TSV materials can reduce thermal expansion coefficient mismatch and consequent stress fracture and that the performance of different materials can be simulated by Fatigue Analysis and Load.


Sign in / Sign up

Export Citation Format

Share Document