scholarly journals Isolation, Identification and Biomanagement of Root Rot of Black Cumin (Nigella sativa) Using Selected Bacterial Antagonists

2017 ◽  
Vol 6 (3) ◽  
pp. 47-56 ◽  
Author(s):  
Al-Sman K. Mohamed ◽  
Abo-El-yousr A. M. Kamal ◽  
Eraky Amal ◽  
El-Zawahry Aida

The study deal with potentiality of some bioagents for controlling the root rot of black cumin under greenhouse conditions, caused by Fusarium spp. Eight fungal isolates were obtained from diseased of back cumin plants collected from Assiut Governorate. These isolates were belonged to the genus Fusarium spp. They were identified as, four isolates of F. comptoceras, three isolates of F. solani and one isolate Fusarium lateritium. Pathogenicity tests indicated that all tested fungal isolates were able to infect black cumin plants causing symptoms of root rot resulted in dwarfism and death before the capsules mature. They varied in their pathogenicity, Fusarium comptoceras No.1 gave the highest percentage of disease severity and percentage of infection on black cumin plants (53 and 50% respectively), while isolates F. comptoceras Nos. 3 and F. solani No. 6 gave the lowest percentage of infection (15 and 17% respectively) the rest of isolates showed moderate of percentage of infection. Antagonistic capability of 15 isolates (PGPR) was tested in vitro against growth of three isolates of Fusarium spp. the causal pathogen of root rot of black cumin. Seeds black cumin plant treated with all bioagents as a suspension significantly increased the root dry weigh and foliar dry weigh compared to infected control. In conclusion, our study confirmed that used of bioagents may be applied as future ecofriendly alternatives to synthetic fungicides for controlling the disease of black cumin.

2000 ◽  
Vol 51 (4) ◽  
pp. 435 ◽  
Author(s):  
M. P. You ◽  
K. Sivasithamparam ◽  
I. T. Riley ◽  
M. J. Barbetti

Asurvey of 30 medic pastures for root-rots was undertaken in Western Australia and pathogenicity tests of representative fungal isolates from roots sampled were conducted to determine the main factors contributing to medic decline and the association between those factors. In particular, the contribution of pathogenic fungi and nematodes to medic root-rot in Western Australia was studied. From a total of 30 000 pieces of root plated, 3836 fungal isolates were obtained and identified at least to genus level. Four hundred and seventy-two representative isolates were tested for in vitro pathogenicity in Medicago sphaerocarpos cv. Orion. Of these, 32 were further tested in the glasshouse. The pathogenicity tests indicated that 56% of isolates were capable of causing significant damage to the root system and it is likely that pathogenic fungi are largely responsible for medic root-rot in the field. In contrast, the number of Pratylenchus spp. in the roots was not found to relate to disease symptoms. It is concluded that soil-borne pathogenic fungi such as species of Pythium, Fusarium, and Phoma contribute significantly to medic pasture decline in Western Australia.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 681-686 ◽  
Author(s):  
Mohammed Elsayed El-Mahrouk ◽  
Mossad K. Maamoun ◽  
Antar Nasr EL-Banna ◽  
Soliman A. Omran ◽  
Yaser Hassan Dewir ◽  
...  

In vitro ovule culture could be used to generate homozygous lines through the production of haploid plants. The present study reports on in vitro regeneration and production of haploid plants through ovule cultures and identification of the regenerated haploids using flow cytometry. The ovules were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kin), 2,4-dichlorophenoxyacetic acid (2,4-D), and naphthalene acetic acid (NAA) at 0, 0.5, 1, and 2 mg·L−1 for their gynogenesis. Among different plant growth regulators (PGRs) tested, 2,4-D at 2 mg·L−1 produced direct gynogenesis. The highest callogenesis percentage (100%) was obtained on MS medium containing 1 mg·L−1 2,4-D and 2 mg·L−1 NAA. Flow cytometry analysis was used to identify the regenerated haploids. It also confirmed gynogenic occurrence at 1 and 2 mg·L−1 2,4-D with percentages of 21.7% and 41%, respectively. Therefore, 2,4-D proved effective for the induction of haploids in black cumin. The regenerated haploids were developed on MS medium without PGRs. The obtained results of in vitro gynogenesis and haploid plant production can tremendously facilitate breeding programs of black cumin.


Antioxidants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 51 ◽  
Author(s):  
Laura Bordoni ◽  
Donatella Fedeli ◽  
Cinzia Nasuti ◽  
Filippo Maggi ◽  
Fabrizio Papa ◽  
...  

The oil obtained from the seeds of Nigella sativa L. (N. sativa), also known as black cumin, is frequently used in the Mediterranean area for its anti-inflammatory, anti-oxidant, and anti-cancer activities. The aim of the present study was to evaluate the antioxidant and anti-inflammatory properties of the oil extracted from seeds of a N. sativa cultivar produced in the Marche region of Italy, and to determine if the thymoquinone content, antioxidant properties, and biological activity would decay during storage. Cytotoxicity and anti-inflammatory properties of N. sativa oil were tested in an in vitro model of low-grade inflammation in Simpson–Golabi–Behmel syndrome human pre-adipocytes. The fresh extracted oil (FEO) contained 33% more thymoquinone than stored extracted oil (SEO), demonstrating that storage affects its overall quality. In addition, the thymoquinone content in the N. sativa oil from the Marche region cultivar was higher compared with other N. sativa oils produced in the Middle East and in other Mediterranean regions. Pro-inflammatory cytokines (e.g., Interleukin (IL)-1alpha, IL-1beta, IL-6) were differently modulated by fresh and stored extracts from N. sativa oils: FEO, containing more thymoquinone reduced IL-6 levels significantly, while SEO inhibited IL-1beta and had a higher antioxidant activity. Total antioxidant activity, reported as µM of Trolox, was 11.273 ± 0.935 and 6.103 ± 0.446 for SEO and FEO (p = 1.255 × 10−7), respectively, while mean values of 9.895 ± 0.817 (SEO) and 4.727 ± 0.324 (FEO) were obtained with the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay (p = 2.891 × 10−14). In conclusion, the oil capacity to counteract proinflammatory cytokine production does not strictly depend on the thymoquinone content, but also on other antioxidant components of the oil.


Author(s):  
Alejandra Mondragón-Flores ◽  
Patricia Manosalva ◽  
Salvador Ochoa-Ascencio ◽  
Marlene Díaz-Celaya ◽  
Gerardo Rodríguez-Alvarado ◽  
...  

<em>Phytophthora cinnamomi</em> is the pathogen most frequently associated with avocado root rot. In Zitácuaro, Michoacán, production has increased by 19.8%; however, there are no studies of root rot in this area. The objective of the study was to characterize the isolates obtained from avocado roots and assess the sensitivity to fungicides. Samples from 5 avocado orchards were collected, sampling 5 trees per orchard (a total of 25 samples). The samples isolated were characterized morphological and molecularly. Mating type was analyzed using reference isolates of<em> P. cinnamomi</em> A1 (isolate from camelia) and A2 (isolate from avocado). To confirm the pathogenicity, tests were performed on avocado fruits with the isolates. The sensitivity of 15 isolates to potassium phosphite and to metalaxyl-M at different concentrations was evaluated<em> in vitro</em>. In a subgroup of six isolates, it was evaluated whether there was a relationship between growth rate and potassium phosphite sensitivity. Fifteen isolates were obtained with coenocytic coraloid mycelium, chlamydospores, sporangia without papilla, ovoid to ellipsoid, with internal proliferation, heterothallic with mating type A2, with amphigynous antheridia and plerotic oospores, characteristics consistent with <em>P. cinnamomi</em>. The inoculated isolates were pathogenic on avocado fruits. The isolates were more sensitive to potassium phosphite than to metalaxyl-M, with mean EC50 values of 24.62 and 0.215 ?g mL-1 of i.a., respectively. No relationship was observed between growth rate and potassium phosphite sensitivity. It is necessary to obtain a greater number of<em> P. cinnamomi</em> isolates for virulence studies.


2020 ◽  
Vol 11 (1) ◽  
pp. 141-147
Author(s):  
El- Sayed Hussein Ziedan ◽  
Moataza Mahmoud Saad ◽  
Khames Ahmed Hemida ◽  
Mohamed Abd El- Aziz El -Naggar ◽  
Mostafa Helmy Mostafa ◽  
...  

Author(s):  
A. Hasrawati ◽  
Irsan Rizaldi ◽  
Deisy Febrianti ◽  
A Mumtihanah Mursyid ◽  
Neneng Amelia Bakri

Objective: Thymoquinone is a main component of Black Cumin (Nigella  sativa Linn.) with various pharmacological activities, but has poor stability and bioavailability. The purpose of this study was to carry out the preparation and characterization of timoquinone nanoparticles PEGylation. Methods: The Thymoquinone nanoparticles  (TQ-NP) were made with PEGylation using PEG 6000 with the concentrations on each preparation of 3 mM (A), 4 mM (B), and 5 mM (C) then were evaluated by the parameter of yield percentage Entrapment Efficiency (EE) and Drug Loading (DL), drug release, size and distribution particle, morphological analysis and Fourier Transform-Infrared spectrophotometer (FTIR). Results: Thymoquinone nanoparticle was PEGylated with PEG 6000  has the highest efficiency entrapment of 99.9718±0.029% in formula A, with the capacity of drug loading 0,66%. Formulation A release 99.9718±0.029% of Thymoquinone at 50 minutes. The morphological observations with Scanning Electron Microscope (SEM) showed spherical nanoparticles morphology.                           Peer Review History: Received 11 September  2020; Revised 5 Decembe; Accepted 3 January, Available online 15 January 2021 UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency. Received file:                           Comments of reviewer(s):         Average Peer review marks at initial stage: 6.0/10 Average Peer review marks at publication stage: 8.0/10 Reviewer(s) detail: Dr. Evren Alğin Yapar, Turkish Medicines and Medical Devices Agency, Turkiye, [email protected] Dr. Sally A. El-Zahaby, Pharos University in Alexandria, Egypt, [email protected] Similar Articles: ABACAVIR LOADED NANOPARTICLES: PREPARATION, PHYSICOCHEMICAL CHARACTERIZATION AND IN VITRO EVALUATION LONG CHAIN POLYMERIC CARBOHYDRATE DEPENDENT NANOCOMPOSITES IN TISSUE ENGINEERING EFFECT OF PEGYLATED EDGE ACTIVATOR ON SPAN 60 BASED- NANOVESICLES: COMPARISON BETWEEN MYRJ 52 AND MYRJ 59


2019 ◽  
Vol 5 (01) ◽  
pp. 133-137
Author(s):  
Rashmi S. Nigam ◽  
R. U. Khan ◽  
Reshu Singh ◽  
Joginder Singh

Pea (Pisum sativum) is an important leguminous crop in many countries including India. Wilt and root rot of pea is an important and widespread disease that often causes significant reduction in the yield and quality of harvested peas throughout the production areas. It is the most important and widespread disease of pea grown in relatively dry and warm area. In-vitro effectiveness of various antagonistic fungal isolates namely T. harzianum (Th1, Th2, Th3, Th4 and Th5) was evaluated against Fusarium oxysporum f. sp. pisi, Rhizoctonia solani and Pythium ultimum by dual culture technique on potato dextrose agar. According to the observation recorded after 5 days, all the rhizospheric fungal isolates evaluated for their antagonistic potential against wilt and root-rot pathogens, exhibited significant effect on radial growth inhibition of pathogens in comparison to control. Among the fungal isolates, Th3 and Th5 of T. harzianum proved to be most effective in reducing the growth of F. oxysporum f. sp. pisi, R. solani and P. ultimum. It was worthy to note that all rhizospheric fungal isolates visualized an increase in their antagonistic potential over the period of time in subsequent hours of inoculation.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2054-2059 ◽  
Author(s):  
Angel Rebollar-Alviter ◽  
Hilda Victoria Silva-Rojas ◽  
Dionicio Fuentes-Aragón ◽  
Uriel Acosta-González ◽  
Merari Martínez-Ruiz ◽  
...  

In the 2017 strawberry season, several transplant losses reaching 50% were observed in Zamora, Michoacán Valley, Mexico, due to a new fungal disease associated with root rot, crown rot, and leaf spot. In this year the disease appeared consistently and increased in the following seasons, becoming a concern among strawberry growers. Thus, the aim of this research was to determine the etiology of the disease and to determine the in vitro effect of fungicides on mycelial growth of the pathogen. Fungal isolates were obtained from symptomatic strawberry plants of the cultivars ‘Albion’ and ‘Festival’ and were processed to obtain monoconidial isolates. Detailed morphological analysis was conducted. Concatenated phylogenetic reconstruction was conducted by amplifying and sequencing the translation elongation factor 1 α, β-tubulin partial gene, and the internal transcribed spacer region of rDNA. Pathogenicity tests involving inoculation of leaves and crowns reproduced the same symptoms as those observed in the field, fulfilling Koch’s postulates. Morphology and phylogenetic reconstruction indicated that the causal agent of the described symptoms was Neopestalotiopsis rosae, marking the first report anywhere in the world of this species infecting strawberry. N. rosae was sensitive to cyprodinil + fludioxonil, captan, iprodione, difenoconazole, and prochloraz.


2016 ◽  
Vol 11 (7) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Gökalp İşcan ◽  
Arzu İşcan ◽  
Fatih Demirci

Thymoquinone (TQ) is one of the bioactive constituents of black cumin seed ( Nigella sativa L.) oil. It is well known that this natural volatile quinone has remarkable antimicrobial effects, especially against Candida species. Consequently, in this present study TQ was evaluated for its anticandidal effects against 14 different pathogenic Candida strains by using the in vitro, partly modified, microdilution CLSI M27-A2 method. After TQ treatment at the minimum inhibitory concentration (MIC), ultra-thin sections of C. albicans cells were thoroughly evaluated by transmission electron microscopy (TEM). The mode of action of TQ on different Candida cells was elaborated, where their disintegration and disorganization with amorphous nucleus were observed microscopically.


Sign in / Sign up

Export Citation Format

Share Document