scholarly journals Nuclear Damage in Peripheral Erythrocytes of Cyprinus Carpio Exposed to Binary Mixture of Pesticides

2019 ◽  
Vol 2 (1) ◽  
pp. 39-47
Author(s):  
Faiza Ambreen ◽  
Muhammad Javed

The present study was undertaken to examine the DNA damage in peripheral blood erythrocytes of Cyprinus carpio under the binary exposure of bifenthrin and chlorpyrifos by using single cell gel electrophoresis (SCGE). Limited efforts have been made to study the genotoxic effect for long duration period. Therefore, the present investigation was aimed to assess the genotoxicity of pesticide mixture to the freshwater carp, Cyprinus carpio at sub-lethal concentration exposure (33% LC50). At first 96-hr LC50 value of pesticide, the mixture was determined for Cyprinus carpio in a static system and then sub-lethal concentration was calculated and fish was exposed to this sub-lethal concentration of the mixture in glass aquaria for 70 days (five fortnights) at constant laboratory conditions. Peripheral blood erythrocytes were taken on a fortnightly basis for the time-dependent DNA damage assessment in-terms of percentage of damaged cells, genetic damage index and a cumulative tail length of comets. Concentration-dependent increase in the percentage of DNA damaged cells were observed up to a 4th fortnight, followed by a slight decrease in the 5th fortnight. Similarly, statistically significant time-dependent DNA damage was observed in terms of percentage of damaged cells, genetic damage index and a cumulative tail length of comets in treated fish (at 33% of LC50) as compared to control groups. The results supported the use of SCGE for evaluating the toxicity of pollutants which may be used as part of environmental monitoring programs.

2007 ◽  
Vol 40 (4) ◽  
pp. 476-478 ◽  
Author(s):  
Renata Aparecida Martinez Antunes Ribeiro-Vieira ◽  
Daniel Araki Ribeiro ◽  
Daisy Maria Favero Salvadori ◽  
Sílvio Alencar Marques

Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.


2017 ◽  
Vol 68 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Gordana Brozović ◽  
Nada Oršolić ◽  
Ružica Rozgaj ◽  
Fabijan Knežević ◽  
Anica Horvat Knežević ◽  
...  

AbstractThe aim of this study was to evaluate the DNA damage and repair in kidney cells of Swiss albino mice after repeated exposure to sevoflurane and isoflurane and compare their detrimental effects. We used the alkaline comet assay to establish the genetic damage and measured three parameters: tail length, tail moment, and tail intensity of comets. These parameters were measured immediately after exposure to the above mentioned inhalation anaesthetics, two hours, six hours, and 24 hours later and were compared with the control group. Mean values of all three parameters were significantly higher in experimental groups compared to the control group. DNA damage in kidney cells of mice exposed to sevoflurane increased continuously before it reached its peak 24 hours after exposure. Isoflurane induced the highest DNA damage two hours after exposure. Levels of DNA damage recorded 24 h after cessation of exposure to both tested compounds suggest that sevoflurane was slightly more genotoxic than isoflurane to kidney cells of mice. According to these results, the currently used volatile anaesthetics sevoflurane and isoflurane are able to damage DNA in kidney cells of mice. Such findings suggest a possibility for similar outcomes in humans and that fact must be taken into account in everyday clinical practice.


2021 ◽  
Vol 8 (1) ◽  
pp. 105-113
Author(s):  
Darlina Yusuf ◽  
Devita Tetriana ◽  
Tur Rahardjo ◽  
Teja Kisnanto ◽  
Yanti Lusiyanti ◽  
...  

Analyses of DNA Damage in the Patient’s Lymphocyte Cells Post-Radiotherapy Radiotherapy given in high doses to kill cancer cells can also induce DNA damage in surrounding normal cells. The radiation dose is divided into smaller doses called fractionation to decrease the effect of radiation on normal tissue. For this reason, it is necessary to monitor the peripheral blood lymphocytes to evaluate the patient's DNA damage. The alkaline comet test is a simple and sensitive technique for detecting DNA instability. This study involved 11 patients who underwent radiotherapy up to 20 Gy, and 11 healthy subjects as controls. This study aims to see how much DNA damage is caused by a 20 Gy fractionated radiation dose in patients with various cancers. The results showed that the mean frequency of damaged cells in patients was 80.54 ± 12.52% with a mean comet tail length of 49.98 ± 12.93 µm. There was a significant difference in both the frequency of damaged cells and the mean value of the comet tail length against the control group (p < 0.001). It was concluded that high doses of radiation can cause DNA damage to peripheral blood lymphocytes. Radioterapi yang diberikan dalam dosis tinggi untuk mematikan sel kanker juga dapat menginduksi kerusakan DNA pada sel normal di sekitarnya. Dosis radiasi dibagi menjadi dosis yang lebih kecil yang disebut fraksinasi untuk menurunkan efek radiasi pada jaringan normal. Untuk itu perlu pemantauan pada limfosit darah tepi untuk mengevaluasi kerusakan DNA pasien. Uji komet alkali merupakan teknik yang sederhana dan sensitif untuk mendeteksi ketidakstabilan DNA. Penelitian ini melibatkan 11 pasien yang menjalani radioterapi hingga 20 Gy, dan 11 subyek sehat sebagai kontrol. Penelitian ini bertujuan untuk melihat seberapa besar kerusakan DNA akibat dosis radiasi fraksinasi 20 Gy pada pasien dengan variasi kanker. Hasil penelitian menunjukkan bahwa rerata frekuensi sel yang rusak pada pasien 80,54 ± 12,52% dengan rerata panjang ekor komet 49,98 ± 12,93 µm terdapat perbedaan nyata baik pada frekuensi sel yang rusak maupun nilai rerata panjang ekor komet terhadap kelompok kontrol (p < 0,001). Penelitian ini menyimpulkan bahwa radiasi dosis tinggi dapat menyebabkan kerusakan DNA sel limfosit darah tepi.


1987 ◽  
Vol 14 (3) ◽  
pp. 168-171
Author(s):  
J. Clausen ◽  
S.A. Nielsen

Lymphocytes from normal, non-smoking human individuals not taking drugs were isolated from the peripheral blood by means of the lymphoprep method. The cells were cultured in RPMI medium with 10% fetal calf serum and stimulated with Phytohemagglutinin. A mutagen such as 3-methylcholanthrene was added for varying periods of time. Then the subspecies of DNA, i.e. double and single stranded DNA (ds-DNA and ss-DNA), were separated by the alkaline elution technique and quantitated by fluorimetric estimation. The mutagen induced a significant rise in the level of ss-DNA, but no changes in ds-DNA could be traced. The time-dependent changes increased for at least four days of exposure, indicating that the repair enzymes were not able to compensate for the DNA damage.


2010 ◽  
Vol 30 (9) ◽  
pp. 1275-1281 ◽  
Author(s):  
TA Alvarenga ◽  
DA Ribeiro ◽  
P Araujo ◽  
C Hirotsu ◽  
R Mazaro-Costa ◽  
...  

The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.


2010 ◽  
Vol 30 (9) ◽  
pp. 1297-1302
Author(s):  
Tao Zhang ◽  
Jiye Hu ◽  
Yuchao Zhang ◽  
Qianfei Zhao ◽  
Jun Ning

JS-118 is an extensively used insecticide in China. The present study investigated the genotoxic effect of JS-118 on whole blood at 24, 48, 72 and 96 h by using alkaline comet assay. Male Kunming mice were given 6.25, 12.5, 25, 50 and 100 mg/kg BW of JS-118 intraperitoneally. A statistically significant increase in all comet parameters indicating DNA damage was observed at 24 h post-treatment ( p < 0.05). A clear concentration-dependent increase of DNA damage was revealed as evident by the OTM (arbitrary units), tail length (µm) and tail DNA (%). From 48 h post-treatment, a gradual decrease in mean comet parameters was noted. By 96 h of post-treatment, the mean comet tail length reached control levels indicating repair of damaged DNA. This study on mice showed different DNA damage depending on the concentration of JS-118 and the period of treatment. The present study provided further information of the potential risk of the genetic damage caused by JS-118.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1180
Author(s):  
Galina N. Chelomina ◽  
Sergey P. Kukla ◽  
Viktor P. Chelomin ◽  
Pham N. Doanh

Parasites cause numerous health issues in humans, eventually leading to significant social and economic damage; however, the mechanisms of parasite-mediated pathogenesis are not well understood. Nevertheless, it is clearly evidenced that cancerogenic fluke-induced chronic inflammations and cancer are closely associated with oxidative stress. (1) Methods: The Paragonimus heterotremus infection’s genotoxic potential was assessed in a rat model of simultaneous pulmonary and hepatic paragonimiasis by the alkaline version of single-cell gel electrophoresis (comet assay). Statistical analysis of comet parameters was based on the non-parametric Mann–Whitney U test. (2) Results: A clear and statistically significant increase in DNA damage was detected in the helminth-exposed group versus the control rats and the tissue areas adjacent to the parasite capsule versus remote ones; however, differences in DNA damage patterns between different tissues were not statistically significant. Infection resulted in up to 40% cells with DNA damage and an increased genetic damage index. (3) Conclusions: The data obtained contribute to understanding the pathogenesis mechanisms of paragonimiasis, suggesting oxidative stress as the most likely reason for DNA breaks; these findings allow us to consider P. heterotremus as a potentially cancerogenic species, and they are important for the monitoring and treatment of paragonimiasis.


2019 ◽  
Author(s):  
Yanhua Zhou ◽  
Kun Wang ◽  
Boshen Wang ◽  
Yuepu Pu ◽  
Juan Zhang

Abstract Background To systematically evaluate the influence of benzene exposure on the genetic damage index of workers, and to explore the influence of low concentration benzene exposure on workers’ genetic damage index using 3.25mg/m3 as the boundary value, in order to provide a basis for improved prevention and control of the harm from benzene exposure to the occupational population. Methods We conducted a search of five databases, including Pub Med, Web of Science,China National Knowledge Infrastructure(CNKI), Wan Fang Data and Chongqing VIP, to identify relevant articles up to December 25, 2018. Two researchers independently extracted and carefully evaluated the data according to the inclusion and exclusion criteria of the literature. The imported articles were managed by Endnote X7, and the data were extracted and sorted by Excel 2013. We utilized Stata 12.0 software to perform the meta-analysis in the present study. Results A total of 68 eligible articles were finally included for the synthetic analyses. The meta-analysis results showed that occupational benzene exposure led to significantly increased Micronucleus (MN) frequency, Sister chromatid exchange (SCE) frequency, Chromosome aberration (CA) frequency, Olive Tail moment (OTM), Tail moment (TM), Tail length (TL), and Tail DNA% (T DNA%) compared to the control group (P < 0.05), and the pooled effect value estimates were 1.36, 0.98, 0.76, 1.06, 0.96, 1.78, and 1.42, respectively. Subsequent analysis of the effect of low concentration benzene exposure on genetic damage found significantly increased MN frequency increased compared with the control group (P < 0.05). Conclusions Occupational benzene exposure can affect multiple genetic damage indicators. Even at an exposure concentration lower than 3.25mg/m3, benzene exposure has genotoxicity. These data provide an important scientific basis for the further revision of occupational disease prevention strategies in China. At the same time, increased attention should be focused on the health monitoring of the occupational population exposed to benzene, and health management should be strengthened to improve the health of the occupational population.


2018 ◽  
Vol 76 (3) ◽  
pp. 115-124 ◽  
Author(s):  
Puthan Variyam Vidya ◽  
Kumari Chidambaran Chitra

Abstract The purpose of the present study is to extend knowledge on the adverse effects of nanoparticles by evaluating genotoxicity as environmental risk assessment in Oreochromis mossambicus. Fish were exposed to sublethal concentrations of the selected nanoparticles, namely silicon dioxide (SiO2NPs-12mg/L), aluminium oxide (Al2O3NPs-4mg/L), titanium dioxide (TiO2NPs-16.4mg/L) and iron oxide (Fe3O4NPs-15mg/L) for short-term (24, 72 and 96 h) and long-term durations (15, 30 and 60 days). Genetic damages such as cytoplasmic, nuclear and DNA damage were measured in the erythrocytes of fish by using standard genotoxicity tests such as micronucleus test and comet assay. The frequencies of micronuclei along with nuclear and cytoplasmic abnormalities were scored and compared with the control group. The intensity of micronuclei along with other nuclear and cytoplasmic anomalies are found to be increased significantly (p<0.05) in time-dependent manner in all exposure groups when compared to the control group, thereby indicating chromosomal damage as a result of contact with nanoparticles. The tail length and percent of tail DNA within the comet significantly (p<0.05) increased in time-dependant manner after exposure to all nanoparticles, demonstrating an increase in DNA damage. Taken together, by using micronucleus test and comet assay, it is evident that the selected nanoparticles at sublethal concentrations induced genetic damage in Oreochromis mossambicus.


2020 ◽  
Author(s):  
Yanhua Zhou ◽  
Kun Wang ◽  
Boshen Wang ◽  
Yuepu Pu ◽  
Juan Zhang

Abstract Background To systematically evaluate the influence of benzene exposure on the genetic damage index of workers, and to explore the influence of low concentration benzene exposure on workers’ genetic damage index using 3.25mg/m3 as the boundary value, in order to provide a basis for improved prevention and control of the harm from benzene exposure to the occupational population. Methods We conducted a search of five databases, including Pub Med, Web of Science,China National Knowledge Infrastructure(CNKI), Wan Fang Data and Chongqing VIP, to identify relevant articles up to December 25, 2018. Two researchers independently extracted and carefully evaluated the data according to the inclusion and exclusion criteria of the literature. The imported articles were managed by Endnote X7, and the data were extracted and sorted by Excel 2013. We utilized Stata 12.0 software to perform the meta-analysis in the present study. Results A total of 68 eligible articles were finally included for the synthetic analyses. The meta-analysis results showed that occupational benzene exposure led to significantly increased Micronucleus (MN) frequency, Sister chromatid exchange (SCE) frequency, Chromosome aberration (CA) frequency, Olive Tail moment (OTM), Tail moment (TM), Tail length (TL), and Tail DNA% (T DNA%) compared to the control group (P < 0.05), and the pooled effect value estimates were 1.36, 0.98, 0.76, 1.06, 0.96, 1.78, and 1.42, respectively. Subsequent analysis of the effect of low concentration benzene exposure on genetic damage found significantly increased MN frequency increased compared with the control group (P < 0.05). Conclusions Occupational benzene exposure can affect multiple genetic damage indicators. Even at an exposure concentration lower than 3.25mg/m3, benzene exposure has genotoxicity. These data provide an important scientific basis for the further revision of occupational disease prevention strategies in China. At the same time, increased attention should be focused on the health monitoring of the occupational population exposed to benzene, and health management should be strengthened to improve the health of the occupational population.


Sign in / Sign up

Export Citation Format

Share Document