scholarly journals Stripping Material from a Supported Lipid Bilayer with High Speed Buffer Flow

2020 ◽  
Vol 17 (3) ◽  
pp. 51-59
Author(s):  
Michael Ornstead ◽  
Ruth Hunter ◽  
Mason Valentine ◽  
Cameron Cooper ◽  
Stephen Smith ◽  
...  

A microfluidic device was created and used to demonstrate that supported lipid bilayers can be deposited on clean glass slides and removed using high velocity buffer flow (1-4 m/s linear velocity). This was accomplished by forcing the flow through a microfluidic channel covering an annealed glass coverslip bearing a supported lipid bilayer (SLB). The removal of bilayer material was monitored via fluorescence microscopy, and two basic regimes were observed: at 1-2 m/s smaller areas were stripped, while at 3-4 m/s larger areas were stripped. SLB removal was verified by two means. First, lipid vesicles labeled with a different fluorescent dye were added to the device and filled in holes left by the removal of the original SLB, allowing stripping to be verified visually. Second, the solutions obtained from stripping were concentrated and the fluorescence in the concentrates was measured. The ability to strip SLB from glass provides a relatively gentle method of creating spatially inhomogeneous SLB, which could be a useful tool in the continued investigation of membrane properties and components. KEYWORDS: Supported Lipid Bilayer; Membrane Vesicle; Microfluidic Device

2013 ◽  
Vol 19 (S4) ◽  
pp. 107-108 ◽  
Author(s):  
A.A. Duarte ◽  
M. Raposo

Liposomes or lipid vesicles are self-closed structures formed by one or several concentric lipid bilayers with an aqueous phase inside, which may incorporate almost any molecule, namely proteins, hormones, enzymes, antibiotics, anticancer agents, antifungical agents, gene transfer agents, DNA, and whole viruses. Scientific evidences prove that unprotected liposomes containing drugs are easily released from the endoplasmic reticulum of the cell. To increase the vesicles lifetime and to activate a controlled drug release with an external stimulus, the vesicles immobilization on a surface and the factors which create conditions to the liposome rupture have to be analyzed. A number of studies have identified some of the critical stages of vesicle adsorption (adhesion), fusion, deformation, rupture, and spreading of the lipid bilayer. Nevertheless, the formation mechanisms of well-controlled continuous supported bilayers or adsorption of whole liposomes are still not fully understood. As yet it was demonstrated that a controlled adsorption of vesicles containing a small fraction of charged lipids occurs without rupture and their subsequent embedding in polyelectrolyte multilayer (PEM) films, meaning vesicles may be immobilized in an intact or slightly deformed state, which can act as drug reservoirs. Moreover, depending on the nature of the physicochemical conditions of the vesicle solution and the substrate surface, a flat lipid bilayer can be formed, known as supported lipid bilayers, which can incorporate membrane proteins and keep the native dynamics of the lipid bilayer mimicking a biological membrane. In this study, a layer of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) liposomes adsorbed onto PEMs cushions based on poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolytes was analyzed by atomic force microscopy (AFM) technique in non-contact mode and quartz crystal microbalance (QCM).Sequential heterostructures of Si/PEI(PSS/PAH)4 and Si/PAH, also designated cushions, were prepared onto silicon substrates using the layer-by-layer (LbL) technique with polyelectrolyte solutions of PEI, PSS and PAH of monomeric concentrations of 0.01M. Topographic images of 1×1μm2 area of Si/PAH/DPPG (Figure 1 a), and Si/PEI(PSS/PAH)4/DPPG (Figure 1 b) LbL films were acquired by AFM. The root mean square roughness (RMS) calculated from topographies data are listed in table I. As shown, when a DPPG layer is adsorbed onto Si/PAH the RMS keeps an approximately equal value meaning that the liposome disrupted and spread onto the surface forming a planar lipid bilayer. But when a DPPG layer is adsorbed onto Si/PEI(PSS/PAH)4 the RMS value doubled, indicating that the structural integrity of the liposomes is maintained, even though there has been any deformation during adsorption. The adsorbed amount of the two PEMs and DPPG-liposomes layers was measured using a QCM and is displayed in table I. The DPPG adsorbed amount obtained on the PAH cushion was approximately equal to a planar lipid bilayer, while the adsorption onto PEI(PSS/PAH)4 was higher than the predicted for a planar lipid bilayer. This behavior suggests that the DPPG liposomes on the second PEM remained intact during adsorption. Both confirm the AFM results. Therefore we conclude that the initial roughness of the surface is a primordial factor to determine the adsorption or not of intact vesicles.The authors acknowledge the “Fundação para a Ciência e Tecnologia” (FCT-MEC) by the post-graduate scholarship SFRH/BD/62229/2009 and the “Plurianual” funding.


2019 ◽  
Vol 55 (87) ◽  
pp. 13152-13155
Author(s):  
Awatef Ben Tahar ◽  
Abdelkader Zebda ◽  
Jean-Pierre Alcaraz ◽  
Landry Gayet ◽  
Abderrahim Boualam ◽  
...  

This biomimetic membrane system of Na+/H+ transport proteins in a lipid bilayer supported by polyanaline has controllable electrogenic ion transport to function as a high-speed rechargeable biocapacitor for use in bioinspired biological engineering.


2000 ◽  
Vol 55 (9-10) ◽  
pp. 758-763 ◽  
Author(s):  
Janina Gabrielska ◽  
Teresa Kral ◽  
Marek Langner ◽  
Stanislaw Przestalski

Abstract Phenyltins are chemicals widely used in industry, hence their occurrence in the human environment is frequent and widespread. Such compounds include hydrophobic phenyl rings bonded to positively charged tin. This molecular structure makes them capable of adsorbing onto and penetrating through biological membranes, hence they are potentially hazardous. Two such compounds, diphenyltin and triphenyltin, show different steric constraints when interacting with the lipid bilayer. It has been demonstrated that these compounds are positioned at different locations within model lipid bilayers, causing dissimilarity in their ability to affect membrane properties. In this paper we present a study regarding the ability of these two phenyltins to facilitate the transport of S2O4-2 ions across the lipid bilayer, evaluated by a fluorescence quenching assay. In concentration range of up-to 60 μm those compounds do not affect lipid bilayer topology, when evaluated by vesicle size distribution. Both phenyltins facilitate the transfer of S2O4-2 across the model lipid bilayer, but the dependence of dithionite transport on phenyltin concentration is different for both. In principle, above 20 μm triphenyltin is more efficient in transfering ions across the lipid bilayer than diphenyltin.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244460
Author(s):  
Haoyuan Jing ◽  
Yanbin Wang ◽  
Parth Rakesh Desai ◽  
Kumaran S. Ramamurthi ◽  
Siddhartha Das

Flip-flop of lipids of the lipid bilayer (LBL) constituting the plasma membrane (PM) plays a crucial role in a myriad of events ranging from cellular signaling and regulation of cell shapes to cell homeostasis, membrane asymmetry, phagocytosis, and cell apoptosis. While extensive research has been conducted to probe the lipid flip flop of planar lipid bilayers (LBLs), less is known regarding lipid flip-flop for highly curved, nanoscopic LBL systems despite the vast importance of membrane curvature in defining the morphology of cells and organelles and in maintaining a variety of cellular functions, enabling trafficking, and recruiting and localizing shape-responsive proteins. In this paper, we conduct molecular dynamics (MD) simulations to study the energetics, structure, and configuration of a lipid molecule undergoing flip-flop and desorption in a highly curved LBL, represented as a nanoparticle-supported lipid bilayer (NPSLBL) system. We compare our findings against those of a planar substrate supported lipid bilayer (PSSLBL). Our MD simulation results reveal that despite the vast differences in the curvature and other curvature-dictated properties (e.g., lipid packing fraction, difference in the number of lipids between inner and outer leaflets, etc.) between the NPSLBL and the PSSLBL, the energetics of lipid flip-flop and lipid desorption as well as the configuration of the lipid molecule undergoing lipid flip-flop are very similar for the NPSLBL and the PSSLBL. In other words, our results establish that the curvature of the LBL plays an insignificant role in lipid flip-flop and desorption.


2021 ◽  
Author(s):  
Karan Bali ◽  
Zeinab Mohamed ◽  
Anna-Maria Pappa ◽  
Susan Daniel ◽  
Clemens F. Kaminski ◽  
...  

Supported lipid bilayers (SLBs) made from reconstituted lipid vesicles are an important tool in molecular biology. A breakthrough in the field has come with the use of vesicles derived from cell membranes to form SLBs. These new supported bilayers, consisting both of natural and synthetic components, provide a physiologically relevant system on which to study protein-protein interactions as well as protein-ligand interactions and other lipid membrane properties. These complex bilayer systems hold promise but have not yet been fully characterised in terms of their composition, ratio of natural to synthetic component and membrane protein content. Here, we describe a method of correlative atomic force (AFM) with structured illumination microscopy (SIM) for the accurate mapping of complex lipid bilayers that consist of a synthetic fraction and a fraction of lipids derived from Escherichia coli outer membrane vesicles (OMVs). We exploit the enhanced resolution and molecular specificity that SIM can offer to identify areas of interest in these bilayers and the atomic scale resolution that the AFM provides to create detailed topography maps of the bilayers. We are thus able to understand the way in which the two different lipid fractions (natural and synthetic) mix within the bilayers, quantify the amount of bacterial membrane incorporated in the bilayer and directly visualise the interaction of these bilayers with bacteria-specific, membrane-binding proteins. Our work sets the foundation for accurately understanding the composition and properties of OMV-derived SLBs and establishes correlative AFM/ SIM as a method for characterising complex systems at the nanoscale.


2018 ◽  
Vol 2 (4) ◽  
pp. 50 ◽  
Author(s):  
Fanny Mousseau ◽  
Evdokia Oikonomou ◽  
Victor Baldim ◽  
Stéphane Mornet ◽  
Jean-François Berret

The impact of nanomaterials on lung fluids, or on the plasma membrane of living cells, has prompted researchers to examine the interactions between nanoparticles and lipid vesicles. Recent studies have shown that nanoparticle-lipid interaction leads to a broad range of structures including supported lipid bilayers (SLB), particles adsorbed at the surface or internalized inside vesicles, and mixed aggregates. Currently, there is a need to have simple protocols that can readily evaluate the structures made from particles and vesicles. Here we apply the method of continuous variation for measuring Job scattering plots and provide analytical expressions for the scattering intensity in various scenarios. The result that emerges from the comparison between experiments and modeling is that electrostatics play a key role in the association, but it is not sufficient to induce the formation of supported lipid bilayers.


Soft Matter ◽  
2018 ◽  
Vol 14 (28) ◽  
pp. 5800-5810 ◽  
Author(s):  
Monika Kluzek ◽  
Marc Schmutz ◽  
Carlos M. Marques ◽  
Fabrice Thalmann

Confocal laser scanning microscopy image of a fluorescent supported lipid bilayer exposed to a 15 mM solution of α-cyclodextrin.


2021 ◽  
Vol 22 (11) ◽  
pp. 6087
Author(s):  
Marta Salvador-Castell ◽  
Nicholas J. Brooks ◽  
Roland Winter ◽  
Judith Peters ◽  
Philippe M. Oger

The modification of archaeal lipid bilayer properties by the insertion of apolar molecules in the lipid bilayer midplane has been proposed to support cell membrane adaptation to extreme environmental conditions of temperature and hydrostatic pressure. In this work, we characterize the insertion effects of the apolar polyisoprenoid squalane on the permeability and fluidity of archaeal model membrane bilayers, composed of lipid analogues. We have monitored large molecule and proton permeability and Laurdan generalized polarization from lipid vesicles as a function of temperature and hydrostatic pressure. Even at low concentration, squalane (1 mol%) is able to enhance solute permeation by increasing membrane fluidity, but at the same time, to decrease proton permeability of the lipid bilayer. The squalane physicochemical impact on membrane properties are congruent with a possible role of apolar intercalants on the adaptation of Archaea to extreme conditions. In addition, such intercalant might be used to cheaply create or modify chemically resistant liposomes (archeaosomes) for drug delivery.


2016 ◽  
Vol 18 (4) ◽  
pp. 3040-3047 ◽  
Author(s):  
Min Chul Kim ◽  
Anders Gunnarsson ◽  
Seyed R. Tabaei ◽  
Fredrik Höök ◽  
Nam-Joon Cho

High quality and complete supported lipid bilayers are formed on silicon oxide by employing an AH peptide mediated repair step.


Sign in / Sign up

Export Citation Format

Share Document