scholarly journals Experimental Validation of EnergyPlus® Simulation of a Single Storey Building

2011 ◽  
Vol 2 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Azhaili Baharun ◽  
Siti Halipah Ibrahim ◽  
Mohammad Omar Abdullah ◽  
Ooi Koon Beng

EnergyPlus® simulated indoor temperatures of a single storey building at the east campus of Universiti Malaysia Sarawak, for April and June, are validated with measurements taken in 2007.The measured local outdoor temperature was used together with the global solar radiation, wind velocity, relative humidity and cloud cover measured at the Kuching airport to replace the typical meteorological year (TMY) values in the EnergyPlus® weather (EPW) file to fonn a Modified EPW weather file at the time/date of experiments. The remaining fields of the Modified EPW contain TMY data including the direct and diffuse solar radiations and the 'sky's' infrared radiation, which is also present at night.Analysis of the temperatures at the windows simulated with the EPW and Modified EPW weather files for the April and June experiments show the strong influence of the outdoor temperature and importance of the global solar radiation in the weather file and local outdoor temperature is used in the Modified EPW.Day time peak mismatches between the measured indoor air temperature and the indoor air temperature simulated with the Modified EPW is 2 to 3 deg C. These are due to the use of the TMY direct and diffuse solar radiations in the heat balance algorithms at the outside surfaces. The corresponding night time mismatches are less than 1 deg C because the TMY values of the long wave infra-red radiation emitted from molecules and particles in the atmosphere in the Modified EPW are used in simulation.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2014 ◽  
Vol 925 ◽  
pp. 641-645 ◽  
Author(s):  
Mohamed Salmi ◽  
Hassen Bouzgou ◽  
Yarub Al-Douri ◽  
Abdelhakim Boursas

We present three models for the estimation of hourly global solar radiation for two sites in Algeria, namely: Djelfa (Latitude 34.68°N, Longitude 3.25°E, Altitude 1126 (m)) and Ain Bessem (Latitude 36.31°N, Longitude 3.67°E, Altitude 629 (m)). The models are: the Gaussian distribution model, the model by Collares-Pereira-RabI and the H.A. model (Hourly absolute modelling approach). The experimental assessment was done using recorded values of the hourly global solar radiation on a horizontal plane during the period 2000-2004. The obtained results show a close similarity between the solar radiation values calculated by the three models and the measured values, especially for the first model. The experimental validation shows promising results for the estimation and precise prediction of the hourly global solar radiation.


2019 ◽  
Vol 29 (7) ◽  
pp. 987-1005 ◽  
Author(s):  
Shahla Ghaffari Jabbari ◽  
Aida Maleki ◽  
Mohammad Ali Kaynezhad ◽  
Bjarne W. Olesen

The study was conducted to investigate thermal adaptation and the impact of individual differences on developing thermal tolerance when the outdoor temperature falls below 10°C. The applicability of the predicted mean vote (PMV) model was investigated, too. The concept of occupant’s ‘Temperament’ was evaluated as a psychological-adaptation factor. Two main hypotheses were: (a) people with different temperaments would experience different thermal sensations and (b) the classic PMV- predicted percentage dissatisfied (PPD) model is capable of predicting the neutral sensation in heated buildings under cold outdoor temperatures. There was a direct relationship between individual temperament and clothing level as well as thermal sensation. The occupants who were assessed to have cold temperament tend to wear thicker clothes and were more sensitive to variations in indoor air temperature than others. Females with a cold temperament were more than twice as likely to be affected by indoor air temperature as those with a warm temperament. The PMV-PPD model was able to predict the mean neutral temperature in the heated buildings even when the outdoor temperature fell below 10°C. However, when occupants were able to control high indoor temperature, the percentage of true prediction of actual mean votes by the adaptive thermal heat balance model was more than that by the classic PMV model.


2018 ◽  
Vol 33 (2) ◽  
pp. 238-246
Author(s):  
João Rodrigo de Castro ◽  
Santiago Vianna Cuadra ◽  
Luciana Barros Pinto ◽  
João Marcelo Hoffmann de Souza ◽  
Marcos Paulo dos Santos ◽  
...  

Abstract The objective of this study was to evaluate the use of estimated global solar radiation data in the simulations of potential yield of irrigated rice. Global solar radiation was estimated by four empirical models, based on air temperature, and a meteorological satellite derivated. The empirical models were calibrated and validated for 10 sites, representative of the six rice regions of the State of Rio Grande do Sul - Brazil. To evaluate the impact of the radiation estimates on irrigated rice yield simulations, the CERES-Rice model, calibrated for four cultivars, was used. The estimates of global solar radiation of the empirical models based on the air temperature showed deviations, from the observed values, of 20 to 30% and the estimated by satellite deviations of more than 30%. The global solar radiation data estimated by the Hargreaves and Samani, Donatelli and Campbell and derived satellite (PowerNasa) type air temperature-based empirical models can be used as input data in simulation models of crop growth, development and productivity of irrigated rice.


2021 ◽  
Vol 7 ◽  
pp. 136-157
Author(s):  
Hai Tao ◽  
Ahmed A. Ewees ◽  
Ali Omran Al-Sulttani ◽  
Ufuk Beyaztas ◽  
Mohammed Majeed Hameed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document