scholarly journals THE STRUCTURE, COMPOSITION AND DEPOSITIONAL ENVIRONMENTS OF KUONAMKA FORMATION IN THE EAST OF ANABAR OIL-AND-GAS REGION

2021 ◽  
Vol 2 (1) ◽  
pp. 32-37
Author(s):  
Irina V. Varaksina

The structural features, lithological composition and sedimentation conditions of the Kuonamka Formation were identified in the analysis of core material uncovered by wells in the east of Anabar oil-and-gas region in the basin of the Kyulenke River. It was established that the studied highly carbonaceous rocks accumulated in deep-water conditions of the open sea in reducing, mainly euxinic environments.

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2021 ◽  
Vol 32 (3) ◽  
pp. 486-500
Author(s):  
Yong Yi Zhen ◽  
Ian G. Percival ◽  
Phil Gilmore ◽  
Jodie Rutledge ◽  
Liann Deyssing

1998 ◽  
Vol 17 (9-10) ◽  
pp. 963-985 ◽  
Author(s):  
Torben Fronval ◽  
Eystein Jansen ◽  
Haflidi Haflidason ◽  
Hans Petter Sejrup

Author(s):  
Elton J. B. Ribeiro ◽  
Zhimin Tan ◽  
Yucheng Hou ◽  
Yanqiu Zhang ◽  
Andre Iwane

Currently the oil and gas industry is focusing on challenging deep water projects, particularly in Campos Basin located coast off Brazil. However, there are a lot of prolific reservoirs located in shallow water, which need to be developed and they are located in area very far from the coast, where there aren’t pipelines facilities to export oil production, in this case is necessary to use a floating production unit able to storage produced oil, such as a FPSO. So, the riser system configuration should be able to absorb FPSO’s dynamic response due to wave load and avoid damage at touch down zone, in this case is recommended to use compliant riser configuration, such as Lazy Wave, Tethered Wave or Lazy S. In addition to, the proposed FPSO for Tubarão Martelo development is a type VLCC (Very Large Crude Carrier) using external turret moored system, which cause large vertical motion at riser connection and it presents large static offset. Also are expected to install 26 risers and umbilicals hanging off on the turret, this large number of risers and umbilicals has driven the main concerns to clashing and clearance requirement since Lazy-S configuration was adopted. In this paper, some numerical model details and recommendations will be presented, which became a feasible challenging risers system in shallow water. For instance, to solve clashing problem it is strictly recommended for modeling MWA (Mid Water Arch) gutter and bend stiffener at top I-tube interface, this recommendation doesn’t matter in deep water, but for shallow water problem is very important. Also is important to use ballast modules in order to solve clashing problems.


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


2021 ◽  
Vol 3 (8) ◽  
pp. 70-72
Author(s):  
Jianbo Hu ◽  
◽  
Yifeng Di ◽  
Qisheng Tang ◽  
Ren Wen ◽  
...  

In recent years, China has made certain achievements in shallow sea petroleum geological exploration and development, but the exploration of deep water areas is still in the initial stage, and the water depth in the South China Sea is generally 500 to 2000 meters, which is a deep water operation area. Although China has made some progress in the field of deep-water development of petroleum technology research, but compared with the international advanced countries in marine science and technology, there is a large gap, in the international competition is at a disadvantage, marine research technology and equipment is relatively backward, deep-sea resources exploration and development capacity is insufficient, high-end technology to foreign dependence. In order to better develop China's deep-sea oil and gas resources, it is necessary to strengthen the development of drilling and completion technology in the oil industry drilling engineering. This paper briefly describes the research overview, technical difficulties, design principles and main contents of the completion technology in deepwater drilling and completion engineering. It is expected to have some significance for the development of deepwater oil and gas fields in China.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 283-292
Author(s):  
Tomasz Topór ◽  

The application of machine learning algorithms in petroleum geology has opened a new chapter in oil and gas exploration. Machine learning algorithms have been successfully used to predict crucial petrophysical properties when characterizing reservoirs. This study utilizes the concept of machine learning to predict permeability under confining stress conditions for samples from tight sandstone formations. The models were constructed using two machine learning algorithms of varying complexity (multiple linear regression [MLR] and random forests [RF]) and trained on a dataset that combined basic well information, basic petrophysical data, and rock type from a visual inspection of the core material. The RF algorithm underwent feature engineering to increase the number of predictors in the models. In order to check the training models’ robustness, 10-fold cross-validation was performed. The MLR and RF applications demonstrated that both algorithms can accurately predict permeability under constant confining pressure (R2 0.800 vs. 0.834). The RF accuracy was about 3% better than that of the MLR and about 6% better than the linear reference regression (LR) that utilized only porosity. Porosity was the most influential feature of the models’ performance. In the case of RF, the depth was also significant in the permeability predictions, which could be evidence of hidden interactions between the variables of porosity and depth. The local interpretation revealed the common features among outliers. Both the training and testing sets had moderate-low porosity (3–10%) and a lack of fractures. In the test set, calcite or quartz cementation also led to poor permeability predictions. The workflow that utilizes the tidymodels concept will be further applied in more complex examples to predict spatial petrophysical features from seismic attributes using various machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document